We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Thermo Fisher Scientific - Direct Effect Media

Download Mobile App





Scientists Use Cloud-Based Supercomputing and AI to Develop COVID-19 Treatments and Vaccine Models

By HospiMedica International staff writers
Posted on 16 Sep 2020
Print article
Image: Covax-19 (Photo courtesy of Vaxine Pty Ltd.)
Image: Covax-19 (Photo courtesy of Vaxine Pty Ltd.)
A team of scientists from a vaccination biotech company have used cloud-based supercomputing and artificial intelligence (AI) to develop COVID-19 treatments and vaccine models.

The research team from Vaxine Pty Ltd. (Adelaide, Australia) used computer modelling on the coronavirus spike protein to rapidly design a synthetic COVID-19 vaccine. The Vaxine team was able to design, manufacture and advance their Covax-19 vaccine into human trials in under five months in a process that normally would take up to 15 years. The team is also using similar techniques for other projects, including a new treatment for respiratory complications of COVID-19, a preventive nasal spray, and a rapid response test to predict how severely the disease will progress.

Recently, the Vaxine research group released a list of up to 80 new potential candidate drugs against the COVID-19 virus. The possible therapies were identified using cloud-based supercomputer programs used by Vaxine in its vaccination research modelling, allowing other researchers to further investigate their potential. Using the genetic sequence of COVID-19, the team built three dimensional molecular structures of key COVID-19 proteins that were then used to screen existing drugs and natural remedies for potential activity against the COVID-19 protease protein. The team used high performance cloud computing services provided by Oracle under a research grant to Flinders University (Adelaide, South Australia) that enabled the team to rapidly screen for potential drugs against COVID-19.

“Thanks to our unique ability to run computer simulations on the virus before it is even fully characterized, we were able to dramatically speed up the ability to design our Covax-19 vaccine,” said Flinders University Professor Nikolai Petrovsky, Research Director of Vaxine. “The vaccine based on the synthetic spike protein was then manufactured in insect cell cultures before being combined with our Vaxine Advax adjuvant, which is used to turbocharge the vaccine and make it more effective.”

“It is exciting to be at the forefront of global COVID-19 science efforts, applying all the latest cutting edge methods including artificial intelligence and high performance cloud computing to create potential pandemic drugs and vaccines as part of the Vaxine team,” said Dr. Sakshi Piplani, who leads Vaxine’s bioinformatics team.

Related Links:
Vaxine Pty Ltd.
Flinders University



Print article

Channels

Surgical Techniques

view channel
Image: Robotic surgery has been found to improve patient recovery time (Photo courtesy of Pexels)

Robotic Surgery Found to Be Safer, Reduces Patient Time in Hospital

Unlike open surgery, where a surgeon works directly on a patient and involves large incisions in the skin and muscle, robot-assisted surgery allows surgeons to guide minimally invasive instruments remotely... Read more

Patient Care

view channel
Image: Future wearable health tech could measure gases released from skin (Photo courtesy of Pexels)

Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases

Most research on measuring human biomarkers, which are measures of a body’s health, rely on electrical signals to sense the chemicals excreted in sweat. But sensors that rely on perspiration often require... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.