We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App





Scientists Use Cloud-Based Supercomputing and AI to Develop COVID-19 Treatments and Vaccine Models

By HospiMedica International staff writers
Posted on 16 Sep 2020
Print article
Image: Covax-19 (Photo courtesy of Vaxine Pty Ltd.)
Image: Covax-19 (Photo courtesy of Vaxine Pty Ltd.)
A team of scientists from a vaccination biotech company have used cloud-based supercomputing and artificial intelligence (AI) to develop COVID-19 treatments and vaccine models.

The research team from Vaxine Pty Ltd. (Adelaide, Australia) used computer modelling on the coronavirus spike protein to rapidly design a synthetic COVID-19 vaccine. The Vaxine team was able to design, manufacture and advance their Covax-19 vaccine into human trials in under five months in a process that normally would take up to 15 years. The team is also using similar techniques for other projects, including a new treatment for respiratory complications of COVID-19, a preventive nasal spray, and a rapid response test to predict how severely the disease will progress.

Recently, the Vaxine research group released a list of up to 80 new potential candidate drugs against the COVID-19 virus. The possible therapies were identified using cloud-based supercomputer programs used by Vaxine in its vaccination research modelling, allowing other researchers to further investigate their potential. Using the genetic sequence of COVID-19, the team built three dimensional molecular structures of key COVID-19 proteins that were then used to screen existing drugs and natural remedies for potential activity against the COVID-19 protease protein. The team used high performance cloud computing services provided by Oracle under a research grant to Flinders University (Adelaide, South Australia) that enabled the team to rapidly screen for potential drugs against COVID-19.

“Thanks to our unique ability to run computer simulations on the virus before it is even fully characterized, we were able to dramatically speed up the ability to design our Covax-19 vaccine,” said Flinders University Professor Nikolai Petrovsky, Research Director of Vaxine. “The vaccine based on the synthetic spike protein was then manufactured in insect cell cultures before being combined with our Vaxine Advax adjuvant, which is used to turbocharge the vaccine and make it more effective.”

“It is exciting to be at the forefront of global COVID-19 science efforts, applying all the latest cutting edge methods including artificial intelligence and high performance cloud computing to create potential pandemic drugs and vaccines as part of the Vaxine team,” said Dr. Sakshi Piplani, who leads Vaxine’s bioinformatics team.

Related Links:
Vaxine Pty Ltd.
Flinders University


Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Supplier
128 Slice CT Scanner
Supria 128
New
X-Ray Generator
RF Series
New
Silver Supplier
Heavy-Duty Wheelchair Scale
6495 Stationary

Print article
Radcal

Channels

Critical Care

view channel
Image: The new blood test could prevent some of the 350,000 sepsis deaths in the U.S. annually (Photo courtesy of Cytovale)

Sepsis Test Could Save Lives in Emergency Departments, Study Suggests

Sepsis poses a severe, life-endangering illness that arises when an infection triggers a body-wide chain reaction, potentially causing multiple organs to fail quickly. Prompt and accurate diagnosis is... Read more

Surgical Techniques

view channel
Image: Suppressing production of an immune protein could reduce rejection of biomedical implants (Photo courtesy of 123RF)

Protein Identified for Immune Rejection of Biomedical Implants to Pave Way for Bio-Integrative Medical Devices

Biomedical implants like breast implants, pacemakers, and orthopedic devices have revolutionized healthcare, yet a substantial number of these implants face rejection by the body and have to be removed.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.