We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App





New Bacterial Delivery System to Administer COVID-19 Vaccine Directly to Respiratory Tract as Nasal Spray

By HospiMedica International staff writers
Posted on 05 Nov 2020
Print article
Image: Shi-Hua Xiang, associate professor of veterinary medicine and biomedical sciences and a member of the Nebraska Center for Virology (Photo courtesy of University of Nebraska–Lincoln)
Image: Shi-Hua Xiang, associate professor of veterinary medicine and biomedical sciences and a member of the Nebraska Center for Virology (Photo courtesy of University of Nebraska–Lincoln)
A new bacterial delivery system aims to administer a COVID-19 vaccine directly to the respiratory tract as a nasal spray, prompting an immune response directly at the site where the SARS-CoV-2 virus likely invades and multiplies.

Based on the approach of a team of virologists at the University of Nebraska–Lincoln (Lincoln, NE, USA), bioengineered Lactobacillus - a safe, widely used bacteria best recognized for its role in fermenting yogurt and cheese - would deliver antigens, the vaccine component that triggers an immune response, directly to the mucosal tissues of the nose and mouth. This site-specific strategy may provide more robust protection against COVID-19 than an injected vaccine because it would more closely mimic a natural COVID-19 infection, producing antibodies and immune cells in the key locations where the virus enters.

With a spray vaccine, the team aim to capitalize on some of the uniquely powerful components of the body’s immune machinery that are located in mucosal tissues. The B cells there produce immunoglobulin A, or IgA, which is the body’s powerful first-line defense against pathogens in the gut and airway. Mucosal tissues are also rich in memory T cells, which are able to “remember” specific antigens after crossing paths with them the first time, enabling them to produce a faster, stronger immune response at the next encounter.

Lactobacillus as a vaccine vector offers several advantages. For one, as a food-based platform, it is unquestionably safe. People routinely consume Lactobacillus in yogurt and other probiotic supplements. It is also able to colonize the mucosal tracts, meaning it lives and multiplies in harmony with the airway’s other bacteria. The virologists hope that this means its protective effects will last longer, minimizing the number of times an individual needs the vaccination. Lactobacillus is also relatively inexpensive to produce and amenable to genetic modification, meaning that the virologists can genetically engineer the bacteria to produce SARS-CoV-2 antigens. This allows them to skip the costly and difficult process of antigen purification, which is required for traditional protein-based vaccines.

There are other economic benefits to a nasal spray vaccine. It will not require needles, cutting equipment costs. And it will not necessarily require trained health care workers as people may be able to administer the nose spray themselves. These characteristics make nasal spray vaccines a potentially viable solution for developing countries, which are struggling to secure doses of the leading COVID-19 vaccine candidates. Accordingly, the virologists are also in the early phases of exploring a Lactobacillus-based COVID-19 vaccine. With support from the Office of Research and Economic Development’s COVID-19 Rapid Response Grant Program, the virologists are using a pseudotyped COVID-19 virus to evaluate the effectiveness of the antibodies induced by the engineered bacteria. They are confident that their work will be valuable in the fight against COVID-19 and future viruses that jump from wildlife to humans.

“Mucosal vaccination should be effective because mucosal vaccines induce immunity at the point of viral entry, controlling early infection before it becomes an established systemic infection,” said Shi-Hua Xiang, associate professor of veterinary medicine and biomedical sciences and a member of the Nebraska Center for Virology. “The long-term goal is to make an effective mucosal vaccine for respiratory-transmitted viral infections diseases.”

Related Links:
University of Nebraska–Lincoln

Gold Member
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
PACS Workstation
CHILI Web Viewer

Print article
Detecto

Channels

Critical Care

view channel
Image: Vascular flow modeling exemplar; intracranial aneurysm flow, treatment and thrombosis (Photo courtesy of University of Leeds)

Faster, More Accurate Blood Flow Simulation to Revolutionize Treatment of Vascular Diseases

The field of vascular flow modeling is vital for understanding and treating vascular diseases, but traditionally, these methods require extensive labor and computation. Now, researchers have made groundbreaking... Read more

Surgical Techniques

view channel
Image: The prototype pacemaker is made of a specially engineered membrane (Photo courtesy of University of Chicago)

Ultra-Thin, Light-Controlled Pacemaker Regulates Heartbeats

Millions of individuals depend on pacemakers, small yet vital devices that help maintain a regular heartbeat by regulating the heart's electrical impulses. To minimize complications, there is growing interest... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.