We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App





Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics

By HospiMedica International staff writers
Posted on 23 Dec 2021
Print article
Image: Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics (Photo courtesy of M Reichardt, T Salditt)
Image: Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics (Photo courtesy of M Reichardt, T Salditt)

An innovative X-ray imaging technique that shows COVID-19 can cause vascular damage to the heart could support pathologists with routine diagnostics.

An interdisciplinary research team from the Göttingen University (Göttingen, Germany) and Hannover Medical School (Hannover, Germany) has detected significant changes in the heart muscle tissue of people who died from COVID-19. Damage to lung tissue has been the research focus in this area for some time and has now been thoroughly investigated. The current study underpins the involvement of the heart in COVID-19 at the microscopic level for the first time by imaging and analyzing the affected tissue in the three dimensions.

The scientists imaged the tissue architecture to a high resolution using synchrotron radiation – a particularly bright X-ray radiation – and displayed it three-dimensionally. To do this, they used a special X-ray microscope set up and operated by the University of Göttingen at the German Electron Synchrotron DESY. They observed clear changes at the level of the capillaries (the tiny blood vessels) in the heart muscle tissue when they examined the effects there of the severe form of COVID-19 disease.

In comparison with a healthy heart, X-ray imaging of tissues affected by severe disease, revealed a network full of splits, branches and loops which had been chaotically remodeled by the formation and splitting of new vessels. These changes are the first direct visual evidence of one of the main drivers of lung damage in COVID-19: a special kind of “intussusceptive angiogenes” (meaning new vessel formation) in the tissue. In order to visualize the capillary network, the vessels in the three-dimensional volume first had to be identified using machine learning methods. This initially required researchers to painstakingly, manually label the image data.

There is a very special feature of this study: in contrast to the vascular architecture, the required data quality could be achieved using a small X-ray source in the laboratory of the University of Göttingen. In principle, this means it could also be done in any clinic to support pathologists with routine diagnostics. In the future, the researchers want to further expand the approach of converting the characteristic tissue patterns into abstract mathematical values in order to develop automated tools for diagnostics, again by further developing laboratory X-ray imaging and validating it with data from synchrotron radiation.

"To speed up image processing, we therefore also automatically broke the tissue architecture down into its local symmetrical features and then compared them," explained Marius Reichardt, at the University of Göttingen.

"The parameters obtained from this then showed a completely different quality compared to healthy tissue, or even to diseases such as severe influenza or common myocarditis," added the leaders of the study, Professor Tim Salditt from the University of Göttingen and Professor Danny Jonigk from the Hannover Medical School.

Related Links:
Göttingen University 
Hannover Medical School 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Infant Blood Draw Station
Infant Blood Draw Station

Print article

Channels

Surgical Techniques

view channel
Image: Computational models can predict future structural integrity of a child’s heart valves (Photo courtesy of 123RF)

Computational Models Predict Heart Valve Leakage in Children

Hypoplastic left heart syndrome is a serious birth defect in which the left side of a baby’s heart is underdeveloped and ineffective at pumping blood, forcing the right side to handle the circulation to... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.