We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App





Machine Learning Model Uses Blood Tests to Predict Survival of Critically Ill COVID-19 Patients

By HospiMedica International staff writers
Posted on 20 Jan 2022
Print article
Image: Proteomics core facility at Charité University hospital Berlin (Photo courtesy of Johannes Hartl, Charité)
Image: Proteomics core facility at Charité University hospital Berlin (Photo courtesy of Johannes Hartl, Charité)

A single blood sample from a critically ill COVID-19 patient can be analyzed by a machine learning model which uses blood plasma proteins to predict survival, weeks before the outcome, according to a new study.

Scientists at the Charité-Universitätsmedizin Berlin (Berlin, Germany) have found that the levels of 14 proteins in the blood of critically ill COVID-19 patients are associated with survival. Healthcare systems around the world are struggling to accommodate high numbers of severely ill COVID-19 patients who need special medical attention, especially if they are identified as being at high risk. Clinically established risk assessments in intensive care medicine, such as the SOFA or APACHE II, show only limited reliability in predicting future disease outcomes for COVID-19.

In the new study, researchers studied the levels of 321 proteins in blood samples taken at 349 timepoints from 50 critically ill COVID-19 patients being treated in two independent health care centers in Germany and Austria. A machine learning approach was used to find associations between the measured proteins and patient survival. 15 of the patients in the cohort died; the average time from admission to death was 28 days. For patients who survived, the median time of hospitalization was 63 days.

The researchers pinpointed 14 proteins which, over time, changed in opposite directions for patients who survive compared to patients who do not survive on intensive care. The team then developed a machine learning model to predict survival based on a single time-point measurement of relevant proteins and tested the model on an independent validation cohort of 24 critically ill COVID-10 patients. The model demonstrated high predictive power on this cohort, correctly predicting the outcome for 18 of 19 patients who survived and five out of five patients who died.

The researchers concluded that blood protein tests, if validated in larger cohorts, may be useful in both identifying patients with the highest mortality risk, as well as for testing whether a given treatment changes the projected trajectory of an individual patient.

Related Links:
Charité-Universitätsmedizin Berlin 

Gold Member
12-Channel ECG
CM1200B
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Stereotactic Ultralight System
SUSy

Print article

Channels

Critical Care

view channel
Image: The permeable wearable electronics developed for long-term biosignal monitoring (Photo courtesy of CityUHK)

Super Permeable Wearable Electronics Enable Long-Term Biosignal Monitoring

Wearable electronics have become integral to enhancing health and fitness by offering continuous tracking of physiological signals over extended periods. This monitoring is crucial for understanding an... Read more

Surgical Techniques

view channel
Image: NTT and Olympus have begun the world\'s first joint demonstration experiment of a cloud endoscopy system (Photo courtesy of Olympus)

Cloud Endoscopy System Enables Real-Time Image Processing on the Cloud

Endoscopes, which are flexible tubes inserted into the body's natural openings for internal examination and biopsy collection, are becoming increasingly vital in medical diagnostics. Their minimal invasiveness... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The PATHFAST hs-cTnI-II high-sensitivity troponin assay has been developed for the PATHFAST Biomarker Analyzer (Photo courtesy of Polymedco)

POC Myocardial Infarction Test Delivers Results in 17 Minutes

Chest pain is the second leading cause of emergency department (ED) visits by adults in the United States, generating over 7 million visits annually. In the event of a suspected heart attack, physicians... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.