We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Organ-on-a-Chip Platform Helps Devise Strategy to Treat Severe COVID-19 Complications

By HospiMedica International staff writers
Posted on 30 Mar 2022
Print article
Image: A novel anti-inflammatory peptide could prevent cytokine storm in COVID-19 patients (Photo courtesy of University of Toronto)
Image: A novel anti-inflammatory peptide could prevent cytokine storm in COVID-19 patients (Photo courtesy of University of Toronto)

Cytokine storms are known to occur in some patients with COVID-19, as well as other illnesses. They happen when the body releases a large number of signaling proteins called cytokines in the blood. Too many cytokines push the immune system into overdrive and can lead to vascular complications, multi-organ failure and even death. One of the greatest challenges for clinicians during the COVID-19 pandemic has been to understand why some people infected by the SARS-CoV-2 virus experience cytokine storms, while others do not. Using their novel organ-on-a-chip platform, researchers have now identified a molecule with the potential to combat cytokine storms, one of the most severe complications of COVID-19 infections.

The research team at the University of Toronto (Ontario, Canada) leveraged their expertise in organ-on-a-chip technology to identify the molecule, a novel anti-inflammatory peptide called QHREDGS that does not act on the virus directly. Instead, it works to prevent cytokine storm, a potentially life-threatening immune reaction. The team comprises experts in growing functional cardiac tissue outside the human body. These lab-grown tissues allow researchers to model diseases and understand how genetic mutations in cardiac tissues can cause cardiac failures.

The research team had recently carried out a study using a specific model tissue platform known as integrated vasculature for assessing dynamic events (InVADE). Using the InVADE platform, they infected a microfabricated perfusable blood vessel-on-a-chip with SARS-CoV-2 to understand how the virus triggers inflammation and vascular dysfunction. They also screened five compounds with anti-inflammatory properties that had been previously tested by clinicians to see if any of them showed promise in preventing the cytokine storm.

QHREDGS is a peptide that had previously been found to improve cardiomyocyte metabolism and enhance endothelial cell survival. In the study, the researchers found that it enhanced vascular functions and repaired the harmful effects of SARS-CoV-2. For example, the function of a vascular structure known as the endothelial barrier was improved by 62% compared with endothelial cells without the peptide, and the secretion of some cytokine storm molecules had been decreased between 1,000 to 10,000 times.

The InVADE platform is being used for many other investigations by the researchers, including a study that explores why cancer is rarely found in the heart. The team is also using the vasculature-on-a-chip system to better understand the causes of myocarditis that have been seen in COVID-19 patients, as well as in some individuals who have been vaccinated against the disease. The team is currently collaborating with other clinicians and researchers to find unique biomolecular markers associated with myocarditis. The researchers hope this type of organ-on-a-chip system will enable researchers to predict and better respond to future public health events.

“During the pandemic, we repurposed our cardiac tissue platforms to understand how the SARS-CoV-2 virus can cause vascular dysfunction,” said Rick Lu, a PhD candidate. “Vascular dysfunction can allow SARS-CoV-2 to penetrate into a person’s organs, such as the heart, liver and intestine. By improving vascular function and reducing inflammation in the body, we hope to prevent the kind of organ failure that has been seen in COVID-19 patients.”

Related Links:
University of Toronto 

Print article



view channel
Image: ‘Hologram patients’ developed to help train doctors and nurses (Photo courtesy of University of Cambridge)

Life-Like Hologram Patients Train Doctors for Real-Time Decision Making in Emergencies

A medical training project using 'mixed reality' technology aims to make consistent, high-level and relevant clinical training more accessible across the world. University of Cambridge (Cambridge, UK)... Read more

Critical Care

view channel
Image: New device could provide alternative to opioids and other highly addictive drugs (Photo courtesy of Northwestern University)

Dissolving Implantable Device Can Manage Post-Operative Pain Without Drugs

Researchers have developed a small, soft, flexible implant that relieves pain on demand without the use of drugs. The first-of-its-kind device could provide a much-needed alternative to opioids and other... Read more

Surgical Techniques

view channel
Image: The Senhance surgical system with digital laparoscopy (Photo courtesy of Asensus Surgical)

Digital Laparoscopic Platform Leverages Augmented Intelligence and Machine Learning

Challenges in laparoscopic surgery can impact cost, utilization, effectiveness, and outcomes of the procedure. For instance, the inability of the surgeon to control vision can create efficiency and safety... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more


view channel
Image: Expanding the role of autonomous robots can mitigate the shortage of physicians (Photo courtesy of Pexels)

Robot-Assisted Surgical Devices Market Driven by Increased Demand for Patient-Specific Surgeries

An aging population and accompanying retirements will cause a significant physician shortfall of 55,000 to 150,000 by 2030, creating a gap in the healthcare system. Expanding the role of autonomous robots... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.