We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

AI Device Predicts when Critically Ill Patients Can Be Safely Removed from Ventilator

By HospiMedica International staff writers
Posted on 01 Jul 2022
Print article
Image: An AI tool helps decide when critically ill patients can breathe on their own (Photo courtesy of The Ottawa Hospital)
Image: An AI tool helps decide when critically ill patients can breathe on their own (Photo courtesy of The Ottawa Hospital)

Over the last two years of the pandemic, more people than ever have experienced extreme difficulty breathing, requiring mechanical ventilation (intubation) in critical care units across the world. A mechanical ventilator is a machine that helps patients breathe when they cannot breathe on their own due to critical illness, such as COVID-19, or surgery. The machine is connected to a breathing tube that is inserted into the patient’s trachea. The process of intubating (inserting the tube) and extubating (removing the tube) is very complex, and anyone requiring ventilation will require months of recovery and rehabilitation to learn how to swallow, eat, talk and breathe again. Currently, there is no patient monitoring equipment to help physicians decide the best time to remove a patient from a ventilator to improve their outcomes, but that may be just about to change.

The Ottawa Hospital (Ontario, Canada) has become the first hospital in the world to evaluate an innovative medical device that uses artificial intelligence (AI) to predict when critically ill patients are ready to breathe on their own. Over the last 13 years, the team that developed the device has made major progress in using complex mathematics, AI and routinely collected vital sign data to predict when patients are ready to be extubated. The device, called the Extubation Advisor, constantly monitors and analyzes a patient’s vital signs, including blood pressure, oxygen levels, breathing rhythms and heart rate during their ventilation. Then, it uses AI to provide doctors with a specific read of when the patient can be safely removed from the ventilator.

This is the first time that real-time predictive analytics based on this type of high-frequency data is being used and evaluated at the bedside. The system was used for three months at the bedside of ventilated patients in The Ottawa Hospital’s Intensive Care Unit (ICU), with permission from their families. After the successful initial evaluation, the metrics are looking promising, and the feedback received from physicians was very positive. The team hopes that the device will help improve patient safety and outcomes in the near future. The team’s next steps include a randomized controlled trial. With each milestone, they are one step closer to transforming care for some of the sickest patients treated at hospitals.

“Currently, one in every seven ICU patients experiences extubation failure. Prolonged ventilation harms patients, and early extubation requiring reintubation can be a devastating blow to their recovery,” said Dr. Andrew Seely, a critical care physician, thoracic surgeon and scientist at The Ottawa Hospital, who developed the device. “We’ve developed the first medical device to offer extubation decision support, which we believe will help standardize and improve care.”

Related Links:
The Ottawa Hospital 


Print article
Radcal

Channels

Surgical Techniques

view channel
Image: The NaoTrac CE-certified neurosurgical navigation robot has received TFDA approval (Photo courtesy of Brain Navi Biotechnology)

Neurosurgical Navigation Robot Combines AI and Machine Vision to Streamline Procedures

Amidst the increasing demand for minimally invasive surgery, neuro-navigation has become standard in neurosurgery worldwide. Currently, most navigation systems use a “vision-based optical tracking system”... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more

Business

view channel
Image: The global capsule endoscopy system market is growing at a rapid pace (Photo courtesy of Pexels)

Capsule Endoscopy System Market Driven by Rising Preference for Minimally Invasive Screening Procedure

Capsule endoscopy is generally a non-invasive technique that enables complete examination of the gastrointestinal tract with the use of the disposable and wireless device known as the video capsule.... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.