We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Device Predicts when Critically Ill Patients Can Be Safely Removed from Ventilator

By HospiMedica International staff writers
Posted on 01 Jul 2022
Print article
Image: An AI tool helps decide when critically ill patients can breathe on their own (Photo courtesy of The Ottawa Hospital)
Image: An AI tool helps decide when critically ill patients can breathe on their own (Photo courtesy of The Ottawa Hospital)

Over the last two years of the pandemic, more people than ever have experienced extreme difficulty breathing, requiring mechanical ventilation (intubation) in critical care units across the world. A mechanical ventilator is a machine that helps patients breathe when they cannot breathe on their own due to critical illness, such as COVID-19, or surgery. The machine is connected to a breathing tube that is inserted into the patient’s trachea. The process of intubating (inserting the tube) and extubating (removing the tube) is very complex, and anyone requiring ventilation will require months of recovery and rehabilitation to learn how to swallow, eat, talk and breathe again. Currently, there is no patient monitoring equipment to help physicians decide the best time to remove a patient from a ventilator to improve their outcomes, but that may be just about to change.

The Ottawa Hospital (Ontario, Canada) has become the first hospital in the world to evaluate an innovative medical device that uses artificial intelligence (AI) to predict when critically ill patients are ready to breathe on their own. Over the last 13 years, the team that developed the device has made major progress in using complex mathematics, AI and routinely collected vital sign data to predict when patients are ready to be extubated. The device, called the Extubation Advisor, constantly monitors and analyzes a patient’s vital signs, including blood pressure, oxygen levels, breathing rhythms and heart rate during their ventilation. Then, it uses AI to provide doctors with a specific read of when the patient can be safely removed from the ventilator.

This is the first time that real-time predictive analytics based on this type of high-frequency data is being used and evaluated at the bedside. The system was used for three months at the bedside of ventilated patients in The Ottawa Hospital’s Intensive Care Unit (ICU), with permission from their families. After the successful initial evaluation, the metrics are looking promising, and the feedback received from physicians was very positive. The team hopes that the device will help improve patient safety and outcomes in the near future. The team’s next steps include a randomized controlled trial. With each milestone, they are one step closer to transforming care for some of the sickest patients treated at hospitals.

“Currently, one in every seven ICU patients experiences extubation failure. Prolonged ventilation harms patients, and early extubation requiring reintubation can be a devastating blow to their recovery,” said Dr. Andrew Seely, a critical care physician, thoracic surgeon and scientist at The Ottawa Hospital, who developed the device. “We’ve developed the first medical device to offer extubation decision support, which we believe will help standardize and improve care.”

Related Links:
The Ottawa Hospital 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Flocked Fiber Swabs
Puritan® patented HydraFlock®
New
Ultrasound System
Aplio go
New
6 Drawer X-Tall Emergency Cart
UXRLU-333669-RED

Print article

Channels

Surgical Techniques

view channel
Image: Schematic illustration of rADSC-loaded tubular units promoting bone regeneration of critical-sized skull defects (Photo courtesy of Sun Yat-sen University)

Groundbreaking Tubular Scaffolds Significantly Enhance Bone Regeneration of Critical-Sized Skull Defects

Critical-sized bone defects present a major challenge in the medical field. Traditional treatments like autografts and allografts face limitations due to donor shortages, mismatches in graft sizes, and... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
The Atellica VTLi Patient-side Immunoassay Analyzer, a high-sensitivity troponin I test at the bedside, delivers accurate results in just 8 minutes (Photo courtesy of Siemens Healthineers)

New 8-Minute Blood Test to Diagnose or Rule Out Heart Attack Shortens ED Stay

Emergency department overcrowding is a significant global issue that leads to increased mortality and morbidity, with chest pain being one of the most common reasons for hospital admissions.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.