We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Collaborative Magnetic Microrobots Open New Horizons for Promising Biomedical Applications

By HospiMedica International staff writers
Posted on 25 Oct 2023
Print article
Image: Scientists have achieved a breakthrough in collaborative magnetic microrobotics (Photo courtesy of University of Twente)
Image: Scientists have achieved a breakthrough in collaborative magnetic microrobotics (Photo courtesy of University of Twente)

Surgeons often find it very difficult to reach a particular part of the body that requires surgery. But that is expected to change in the future when a couple of robots smaller than a grain of salt could go inside the body and work together to perform surgery involving all kinds of complex tasks.

For the first time ever, scientists at the Surgical Robotics Laboratory of the University of Twente (Enschede, Netherlands) have managed to make two microrobots work together to pick up, transport, and assemble inanimate objects in a three-dimensional setting. Remarkably, these magnetic microrobots, each just one millimeter in size, were able to handle tasks like lifting and arranging cubes, and they did so within a 3D environment.

Making the magnetic microrobots work together proved to be a huge challenge. One hurdle was that, like regular magnets, these tiny magnetic robots have the tendency to stick together when they come too close. However, the researchers used this natural attraction to their advantage. By developing a specialized controller, they were able to not only guide the movements of the individual robots but also control how they interact with one another. Because these microrobots are biocompatible and can be maneuvered in tough-to-reach or even confined spaces, they hold considerable potential for use in biomedical research and applications.

“It’s almost like magic,” said Franco Piñan Basualdo, a postdoctoral researcher at the Surgical Robotics Laboratory. “We can remotely manipulate biomedical samples without contaminating them. This could improve existing procedures and open the door to new ones.”

Related Links:
University of Twente 

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Mobile Digital Baby Scale
seca 334

Print article

Channels

Critical Care

view channel
Image: The first healthcare device to be powered by body heat was made possible by the use of liquid-based metals (Photo courtesy of Carnegie Mellon)

Healthcare Device Powered By Body Heat Marks First Step Toward Battery-Free Wearable Electronics

Portable, wearable electronics for physiological monitoring are gaining preference over traditional tethered devices in clinical settings due to their convenience for continuous or frequent monitoring.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.