We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App





Study Offers Insight into Designing COVID-19 Drugs to Dually Inhibit SARS-CoV-2 Entry and Replication

By HospiMedica International staff writers
Posted on 09 Nov 2020
A new study offers insight into designing antiviral drugs against COVID-19 by showing that some existing compounds can inhibit both replication inside human cells and viral entry into host cells.

The study, led by researchers from Morsani College of Medicine at the University of South Florida Health (USF Health Tampa, FL, USA) and the University of Arizona College of Pharmacy (St. More...
Phoenix, AZ, USA) showed that the compounds can inhibit both the main protease (Mpro), a key viral protein required for SARS-CoV-2 replication inside human cells, and the lysosomal protease cathepsin L, a human protein important for viral entry into host cells.

The researchers built upon their previous work, which identified and analyzed several promising, existing antiviral drugs as candidates to treat COVID-19. All the candidates chosen to pursue target Mpro to block the replication of SARS-CoV-2 within human cells grown in the laboratory. Two of the compounds, calpain inhibitors II and XII, did not show as much activity against Mpro as another drug candidate called GC-376 in biochemical tests. However, the calpain inhibitors, especially XII, actually worked better than GC-376 at killing SARS-CoV-2 in cell cultures. Calpain inhibitors can block other proteases, including cathepsin L, a critical human host protease involved in mediating SARS-CoV-2 entry into cells.

In this latest study, the researchers used advanced techniques, particularly X-ray crystallography, to visualize how calpain inhibitors II and XII interacted with viral protein Mpro. They observed that the calpain II inhibitor fit as expected into the targeted binding sites on the surface of the SARS-CoV-2 main protease. Unexpectedly, they also discovered that the calpain XII inhibitor adopted a unique configuration - referred to as “an inverted binding pose” - to tightly fit into Mpro active binding sites. A snug fit optimizes the inhibitor’s interaction with the targeted viral protein, decreasing the enzyme activity that helps SARS-CoV-2 proliferate. Besides the increased potency (desired drug effect at a lower dose) of targeting both viral protease Mpro and human protease cathepsin L, another benefit of dual inhibitors is their potential to suppress drug resistance.

SARS-CoV-2 can mutate, or change its targeted genetic sequence. These viral mutations trick the human cell into allowing the virus to attach to the cell’s surface membrane and insert its genetic material, and can alter the shape of viral proteins and how they interact with other molecules (including inhibitors) inside the cell. When the virus mutates so it can continue reproducing, it can become resistant to a particular inhibitor, reducing that compound’s effectiveness. In other words, if the genetic sequence of the viral target (lock) changes, the key (inhibitor) no longer fits that specific lock. But let us say the same key can open two locks to help prevent COVID-19 infection; in this case the two locks are Mpro, the viral target protein, and cathepsin L, the human target protein. The researchers continue to fine-tune existing antiviral drug candidates to improve their stability and performance, and hope to apply what they have learned to help design new COVID-19 drugs. Their next steps will include solving how calpain inhibitors interact chemically and structurally with cathepsin L.

“If we can develop compounds to shut down or significantly reduce both processes - viral entry and viral replication - such dual inhibition may enhance the potency of these compounds in treating the coronavirus infection,” said study co-principal investigator Yu Chen, PhD, a USF Health associate professor of molecular medicine with expertise in structure-based drug design. “Metaphorically, it’s like killing two birds with one stone.”

Related Links:
University of South Florida Health
University of Arizona College of Pharmacy



Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Emergency Ventilator
Shangrila935
Head Rest
Medifa 61114_3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: A fluoroscopy image (left) and graphic representation (right) depict a stent graft (yellow arrowhead) being deployed (Photo courtesy of Bruce et al.)

Minimally Invasive Coronary Artery Bypass Method Offers Safer Alternative to Open-Heart Surgery

Coronary artery obstruction is a rare but often fatal complication of heart-valve replacement, particularly in patients with complex anatomy or prior cardiac interventions. In such cases, traditional open-heart... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.