We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Ampronix,  Inc

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
28 Oct 2020 - 30 Oct 2020
Virtual Venue
02 Nov 2020 - 06 Nov 2020
Virtual Venue

Fatty Acid Levels Could Help Predict Psychosis Risk

By HospiMedica International staff writers
Posted on 03 Nov 2016
Print article
Image: The Scream by Edvard Munch (Photo courtesy of the National Gallery in Oslo, Norway).
Image: The Scream by Edvard Munch (Photo courtesy of the National Gallery in Oslo, Norway).
A novel probabilistic model that combines history, clinical assessment, and fatty-acid biomarkers could help predict transition to first-episode psychosis, claims a new study.

Researchers at the University of Adelaide (UA; Australia), the Medical University of Vienna (Austria), and other institutions conducted a study in 40 patients in Austria to explore if a probabilistic model that combine medical historical, clinical risk factors, oxidative stress and cell membrane fatty acids biomarkers, and resting quantitative electroencephalography (qEEG), could improve the identification of patients with ultra-high risk (UHR) of psychosis.

The researchers then analyzed concurrent and baseline data of the study cohort, who overall exhibited a 28% one-year transition rate to psychosis. They then clustered several significant variables into historical (history of drug use), clinical (Positive and Negative Symptoms Scale [PNSS] and Global Assessment of Function [GAF] scores), and biomarker (total omega-3, nervonic acid) groups, and calculated the post-test probability of transition for each group separately and for group combinations, using the odds ratio form of Bayes’ rule.

The results showed that the combination of all three variable groups vastly improved the specificity of prediction. The model identified over 70% of UHR patients who transitioned within one year, compared with 28% identified by standard UHR criteria. The model classified 77% of cases as very high or low risk based on history and clinical assessment, suggesting that a staged approach, which reserved fatty-acid markers for 23% of cases remaining at intermediate probability following bedside interview, could be the most efficient. The study was published on September 20, 2016, in the Translational Psychiatry.

“Currently, all patients in the ultra-high risk group are considered to have a similar chance of a future psychotic episode; however, we have been able to identify high, intermediate and low-risk groups. The model may help clinicians to decide when a patient's risk of psychosis outweighs any side effects of treatment,” said lead author psychiatrist Scott Clark, MD, of the University of Adelaide. “Fatty acids such as omega-3 and nervonic acid are critical for the normal functioning of the brain, and low levels have been associated with the development of psychosis in high-risk groups.”

The concept of clinical UHR for psychosis was developed to facilitate early detection and intervention, and is defined by a cluster of subthreshold psychotic symptoms. These can include perceptions, such as hallucinations; thinking - for example, ideas of reference, odd beliefs, or magical thinking; and trait risk factors like a family history of psychosis. These are accompanied by impairment in day-to-day function. In recent meta-analysis, studies show that less than 30% of UHR patients will have transitioned to psychosis three years after identification.

Related Links:
University of Adelaide
Medical University of Vienna

Print article
Radcal
M.I ONE Co., Ltd

Channels

Copyright © 2000-2020 Globetech Media. All rights reserved.