We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Structured Anti-Bacterial Phage Hydrogel Heals Itself

By HospiMedica International staff writers
Posted on 06 Aug 2019
Print article
Image: A bacteria-killing gel composed of friendly phages can heal itself when cut (Photo courtesy of JD Howell / McMaster University).
Image: A bacteria-killing gel composed of friendly phages can heal itself when cut (Photo courtesy of JD Howell / McMaster University).
A new study describes how an anti-bacterial gel with self-organizing bundles of phage nanofilaments can be readily modified to target specific cells, including tumors.

Developed by researchers at McMaster University (Hamilton, ON, Canada), the novel gel is composed of self-organized M13 bacteriophage bundles, each made up of hundreds of cross-linked nanofilaments, which are capable of adsorbing water at up to 16 times their weight. The hierarchical M13 hydrogels exhibit several advanced properties at room temperature, including self-healing under appropriate biological conditions, autofluorescence in three channels, biodegradation, non-destructive imaging capability and bioactivity toward host bacteria.

The bacteriophages assemble themselves spontaneously into liquid crystals; with the help of a chemical binder, they readily form a gelatin-like substance that can heal itself when cut. The cross-linked, self-organized hydrogel structures can thus serve as building blocks for bottom-up synthesis. Yellow in color, and with a consistency that resembles jelly, a single milliliter of the antibacterial hydrogel contains about 300 trillion phages. The study describing how the hydrogel is made was published on July 24, 2019, in ACS Chemistry of Materials.

“The DNA of phages can readily be modified to target specific cells, including cancer cells. Through a Nobel Prize-winning technology called phage display, it's even possible to find phages that target plastics or environmental pollutants,” said senior author Zeinab Hosseini-Doust, PhD, of the department of chemical engineering. “Being able to shape phages into solid form opens new vistas of possibility, just as their utility in fighting diseases is being realized, and holds promise for numerous beneficial applications in medicine and environmental protection.”

Bacteriophages are essentially bionanoparticles with a protein coat, the composition of which can be controlled with atomic precision via genetic engineering. They recognize their host via proteins that bind to structures on the surface of the bacteria. Phage proteins are also very stable; some of them require heating at temperatures above 90°C to destroy their 3D structure. Both properties provide durability in harsh environmental conditions, and allow bacteriophages to wait for the next opportunity to infect new host bacteria.

Related Links:
McMaster University

Gold Member
12-Channel ECG
CM1200B
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Anesthesia Workstation
X40

Print article

Channels

Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.