We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
19 Jun 2021 - 22 Jun 2021
Virtual Venue

Acoustic Monitor Detects Cardiac Decompensation Risk

By HospiMedica International staff writers
Posted on 10 Mar 2021
Print article
Image: The AUDICOR acoustic cardiography device (Photo courtesy of Inovise Medical)
Image: The AUDICOR acoustic cardiography device (Photo courtesy of Inovise Medical)
A new heart failure management system detects cardiac decompensation remotely in patients who have been previously hospitalized.

The Inovise Medical (Portland, OR, USA) AUDICOR is an acoustic cardiography device designed to non-invasively assess electro-mechanical activation time (EMAT). The acoustic signals are acquired via a hand-held device that connects to a smart phone and uploaded for remote analysis in the cloud. The result is a series of proprietary cardiac acoustic biomarkers that provide actionable data that physicians can use in order to modify patient therapies (such as changing drug dosages) before a significant deterioration that requires further hospitalization can occur.

The device works by simultaneously recording and algorithmically interpreting digital electrocardiogram (ECG) and acoustic data acquired by a multi-axial sound sensor. By measuring systolic time intervals and diastolic sounds, the AUDICOR can provide a reliable assessment of cardiac hemodynamics. Parameters produced include those needed to assess EMAT and systolic function, including Q wave onset to the S1 interval, the presence of a third heart sound (S3), and systolic dysfunction index (SDI), a combination of EMAT, S3, QRS duration, and QR interval.

“The most significant advantages of this new technology are enhanced ease of use, eliminated risks of surgical complications, and significantly reduced costs compared to permanently implanted physiologic sensors currently on the market,” said Peter Bauer, PhD, CEO of Inovise Medical.

“This technology promises to enhance the management of heart failure patients and keep them out of the hospital,” said Professor Michael Mirro, MD, of Indiana University (Bloomington, IN, USA). “Early detection of potential problems outside of the hospital can allow clinicians to modify the patients' therapeutic regimens and maintain their stable condition.”

The third heart sound (S3), also known as ventricular gallop, occurs after the mitral valve opens to allow passive filling of the left ventricle (LV); if the LV is not overly compliant (as is in most adults), the S3 will not be loud enough to be heard. Thus, S3 heart sound is often a sign of systolic heart failure, as it usually indicates the myocardium is overly compliant, resulting in a dilated LV. According to the company, the technology can be extended for use in other diseases, including LV hypertrophy, constrictive pericarditis, sleep apnea, and ventricular fibrillation.

Related Links:
Inovise Medical

Print article


Copyright © 2000-2021 Globetech Media. All rights reserved.