We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
19 Jan 2023 - 21 Jan 2023

Cutting-Edge Imaging Pinpoints Where and When Hemorrhagic Stroke Has Occurred

By HospiMedica International staff writers
Posted on 13 Jun 2022
Print article
Image: Team member Nicole Sylvain, with USask`s College of Medicine, in a lab at the CLS (Photo courtesy of CLS)
Image: Team member Nicole Sylvain, with USask`s College of Medicine, in a lab at the CLS (Photo courtesy of CLS)

Hemorrhagic stroke, where a weakened vessel in the brain ruptures, can lead to permanent disability or death. Across the globe, over 15 million people are coping with its effects. Time is of the essence when it comes to stroke; the sooner doctors can start treatment, the better the odds they can limit damage. Now, a new study has moved us one step closer to identifying when the bleeding associated with a hemorrhagic stroke starts - critical information for improving patient outcomes.

Using the Mid-IR beamline at the Canadian Light Source (CLS) at the University of Saskatchewan (USask, Saskatoon, Canada), the research team examined brain tissue samples with a special technique called Fourier-transform infrared imaging. The novel approach enabled the researchers to identify changes in the brain specific to hemorrhagic stroke. According to the researchers, the combination of the beamline and infrared imaging made it easy to detect markers of brain damage caused by hemorrhagic stroke.

With synchrotron technology, the team could see where a bleed originated and the extent of oxidative damage it caused – something impossible to do with a microscope or traditional approaches to imaging. Armed with this new approach, and a better understanding of what they are looking for, the researchers will now go back through their extensive “library” of stroke tissue samples to gain a clearer picture of the speed at which oxidative damage begins to ramp up. The team’s findings could eventually enable doctors to use clinical imaging – such as MRI or CT scans – to pinpoint where, and how long ago, a hemorrhagic stroke occurred in the brain. Knowing when bleeding has started can provide clinicians with a clearer picture of the time window they have to act.

“In a sense, this is giving us ‘superhuman vision’ to look at these brains and map out what’s happening metabolically,” said Dr. Jake Pushie, a member of the research team at USask’s College of Medicine.

“Being able to understand what is going on biologically, when we see any kinds of changes in the clinical images, could help doctors provide better care when it comes to minimizing the tissue damage associated with stroke,” added Miranda Messmer, another member of the research team.

Related Links:
University of Saskatchewan

BMP Whole Blood Analyzer: GEM Premier ChemSTAT
Gold Supplier
12-Channel ECG
CM1200B
New
Mobile Suction Unit
SU-305
New
POC Glucose Meter
HemoCue Glucose 201 RT System

Print article

Channels

AI

view channel
Image: EchoGo Heart Failure is the first and only AI-enabled HFpEF detection platform for echocardiography (Photo courtesy of Ultromics)

AI Solution for Echocardiography to Revolutionize Diagnosis of Heart Failure with Preserved Ejection Fraction

Heart failure with preserved ejection fraction (HFpEF) is a type of heart failure often associated with co-morbidities and tends to be caused by increased pressure within the chambers of the heart.... Read more

Surgical Techniques

view channel
Image: ActivSight Intelligent Light has received CE Mark approval (Photo courtesy of Activ Surgical)

Enhanced Imaging System to Become a Game-Changer in the OR by Revolutionizing Surgical Vision

Critical structure identification and tissue perfusion assessment are essential for patients to have the best possible chance of healing well without facing life-threatening or costly complications.... Read more

Patient Care

view channel
Image: Automated cleaning system allows endoscopes to be cleaned direct from clinic (Photo courtesy of Aston University)

World’s First Automated Endoscope Cleaner Fights Antimicrobial Resistance

Endoscopes are long, thin tubes with a light and camera at one end. Due to the sensitivity of the materials and electronics they cannot be sterilized in an autoclave (a machine that uses steam under pressure),... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Business

view channel
Image: The global multiparameter patient monitoring systems market is expected to surpass USD 15 billion by 2028 (Photo courtesy of Unsplash)

Global Multiparameter Patient Monitoring Systems Market Driven by Rising Chronic Illnesses

Multi-parameter patient monitoring equipment is used to assess the vital signs of patients who are suffering from a serious illness. These devices are meant to give the number of data sets on one screen... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.