We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

First-of-Its-Kind Technology Repairs and Regenerates Heart Muscle Cells

By HospiMedica International staff writers
Posted on 17 Jun 2022
Print article
Image: A groundbreaking findings could become a powerful clinical strategy for treating heart disease (Photo courtesy of University of Houston)
Image: A groundbreaking findings could become a powerful clinical strategy for treating heart disease (Photo courtesy of University of Houston)

A first-of-its-kind technology not only repairs heart muscle cells in mice but also regenerates them following a heart attack, or myocardial infarction as it is medically known. The groundbreaking finding has the potential to become a powerful clinical strategy for treating heart disease in humans.

The new technology developed by a team of researchers at the University of Houston (Houston, TX, USA) uses synthetic messenger ribonucleic acid (mRNA) to deliver mutated transcription factors - proteins that control the conversion of DNA into RNA - to mouse hearts. The researchers demonstrated that two mutated transcription factors, Stemin and YAP5SA, work in tandem to increase the replication of cardiomyocytes, or heart muscle cells, isolated from mouse hearts. These experiments were conducted in vitro on tissue culture dishes.

Stemin turns on stem cell-like properties from cardiomyocytes and played a crucial role in the experiments, with the transcription factor being a “game changer.” Meanwhile, YAP5SA works by promoting organ growth that causes the myocytes to replicate even more. In a separate finding, the team has reported that Stemin and YAP5SA repaired damaged mouse hearts in vivo. Notably, myocyte nuclei replicated at least 15-fold in 24 hours following heart injections that delivered those transcription factors.

An added benefit of using synthetic mRNA, according to the researchers, is that it disappears in a few days as opposed to viral delivery. Gene therapies delivered to cells by viral vectors raise several biosafety concerns because they cannot be easily stopped. mRNA-based delivery, on the other hand, turns over quickly and disappears. The findings are especially important because less than 1% of adult cardiac muscle cells can regenerate. When there is a heart attack and heart muscle cells die, the contracting ability of the heart can be lost.

“No one has been able to do this to this extent and we think it could become a possible treatment for humans,” said Robert Schwartz at the UH College of Natural Sciences and Mathematics who led the study. “When both transcription factors were injected into infarcted adult mouse hearts, the results were stunning. The lab found cardiac myocytes multiplied quickly within a day, while hearts over the next month were repaired to near normal cardiac pumping function with little scarring.”

“What we are trying to do is dedifferentiate the cardiomyocyte into a more stem cell-like state so that they can regenerate and proliferate,” said recent Ph.D graduate Siyu Xiao. “This is a huge study in heart regeneration, especially given the smart strategy of using mRNA to deliver Stemin and YAP5SA.”

Related Links:
University of Houston 


Print article
Radcal

Channels

AI

view channel
Image: ‘Hologram patients’ developed to help train doctors and nurses (Photo courtesy of University of Cambridge)

Life-Like Hologram Patients Train Doctors for Real-Time Decision Making in Emergencies

A medical training project using 'mixed reality' technology aims to make consistent, high-level and relevant clinical training more accessible across the world. University of Cambridge (Cambridge, UK)... Read more

Surgical Techniques

view channel
Image: The Senhance surgical system with digital laparoscopy (Photo courtesy of Asensus Surgical)

Digital Laparoscopic Platform Leverages Augmented Intelligence and Machine Learning

Challenges in laparoscopic surgery can impact cost, utilization, effectiveness, and outcomes of the procedure. For instance, the inability of the surgeon to control vision can create efficiency and safety... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more

Business

view channel
Image: Expanding the role of autonomous robots can mitigate the shortage of physicians (Photo courtesy of Pexels)

Robot-Assisted Surgical Devices Market Driven by Increased Demand for Patient-Specific Surgeries

An aging population and accompanying retirements will cause a significant physician shortfall of 55,000 to 150,000 by 2030, creating a gap in the healthcare system. Expanding the role of autonomous robots... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.