We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

ML Tool Alerts Doctors to Patients’ Deteriorating Condition 2-8 Hours in Advance

By HospiMedica International staff writers
Posted on 02 Sep 2022
Print article
Image: Early warning deterioration alerts can be set to monitor patients two to eight hours before they are triggered by current clinical criteria (Photo courtesy of Pexels)
Image: Early warning deterioration alerts can be set to monitor patients two to eight hours before they are triggered by current clinical criteria (Photo courtesy of Pexels)

With the massive amount of data in electronic medical records (EMRs) comes the potential for better patient care. For example, the information from the data can be used to help medical staff make decisions that can prevent a patient’s deterioration from adverse events and acute illness. Up until recently, and still in some hospitals, patient data was not available electronically, restricting the capacity to develop digital tools to benefit from it. Now, a study to develop a machine learning tool which provides an early warning to medical professionals of a patient’s deteriorating condition has shown that the early warning deterioration alerts can be set to monitor patients two to eight hours before they are triggered by current clinical criteria.

The machine learning tool developed by scientists from the Commonwealth Scientific and Industrial Research Organization (CSIRO, Canberra, Australia), Australia's national science agency, will allow medical professionals to now use the data contained in EMRs to predict when a patient’s vital signs such as blood pressure or temperature are likely to reach a danger zone, triggering patient decline. The CSIRO scientists are now in discussion with partners for a clinical trial to explore how the alerts work and how they can be best implemented into clinical workflows.

“Until now there hasn’t been a way to harness all the data in the EMR to predict patient health. This new tool has the potential to transform the day-to-day functioning of health systems,” said CSIRO scientist Dr. Sankalp Khanna. “When applied to a test cohort of 18,648 patient records, the tool achieved 100% for prediction windows two to eight hours in advance for patients that were identified at 95%, 85% and 70% risk of deterioration.”

“Our scientists hold expertise in transforming data into useable information to help guide clinical choices. The new tool also sets out the reasons for the warning, which can guide the choice of intervention,” added Dr. Khanna “The alerts warn medical staff when a patient is at risk of deterioration leading to possible death, cardiac arrest, or unplanned admission to ICU. The tool can notify of the need for clinical intervention. Clinical decision support tools such as these are a pre-emptive solution that can provide medical staff with an opportunity to intervene earlier to prevent adverse patient outcomes.”

Related Links:
CSIRO 

Gold Supplier
SBRT Phantom with Removable Spine
E2E SBRT Phantom with Removable Spine Model 036S-CVXX-xx
New
Surgical Light
HyLED 600 Series
New
Ceiling-Mounted Digital X-Ray System
DigitalDiagnost C50
New
Ultrasound System
HERA W10 Elite

Print article

Channels

AI

view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Surgical Techniques

view channel
Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)

Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: Researchers expect broader adoption of AI in healthcare in the near future (Photo courtesy of Pexels)

Artificial Intelligence (AI) Could Save U.S. Healthcare Industry USD 360 Billion Annually

The wider adoption of artificial intelligence (AI) in healthcare could save the U.S. up to USD 360 billion annually although its uptake in the industry is presently limited owing to the absence of trust... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.