We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Wearable Bioelectronic Device Made From Ultrasoft `Skin-Like` Material Tracks Vital Signs

By HospiMedica International staff writers
Posted on 09 Feb 2023
Print article
Image: Lights connected using the new liquid metal elastomer composite illuminate the logo of the research group (Photo courtesy of University of Missouri)
Image: Lights connected using the new liquid metal elastomer composite illuminate the logo of the research group (Photo courtesy of University of Missouri)

Cancer, diabetes and heart disease are among the leading causes of disability and death, creating the need for a long-term, in-home monitoring solution that can detect these chronic diseases early and enable timely interventions. Now, a team of researchers may have developed such a solution by creating an ultrasoft “skin-like” material that is breathable as well as stretchable. The material could be used for developing an on-skin, wearable bioelectronic device that can simultaneously track multiple vital signs such as blood pressure, electrical heart activity and skin hydration.

Made from a liquid-metal elastomer composite, the key feature of the material developed by researchers at University of Missouri (MU, Columbia, MO, USA) is its skin-like soft properties. The material has integrated antibacterial and antiviral properties to prevent the formation of harmful pathogens on the surface of the skin below the device from extended use. Other researchers have developed similar designs for liquid-metal elastomer composites, although the new approach is a novel one because the breathable “porous” material prevents the liquid metal from leaking out when the material is stretched as the human body moves. The researchers developed the material by building on their existing proof of concept, as demonstrated by their previous work that included a heart monitor presently under development. The researchers hope that in the future, the biological data gathered by the device could be wirelessly transmitted to a smartphone or similar electronics to be shared with medical professionals.

“Our overall goal is to help improve the long-term biocompatibility and the long-lasting accuracy of wearable bioelectronics through the innovation of this fundamental porous material which has many novel properties,” said Zheng Yan, an assistant professor in the Department of Chemical and Biomedical Engineering and the Department of Mechanical and Aerospace Engineering. “It is ultrasoft and ultra-stretchable, so when the device is worn on the human body, it will be mechanically imperceptible to the user. You cannot feel it, and you will likely forget about it. This is because people can feel about 20 kilopascals or more of pressure when something is stretched on their skin, and this material creates less pressure than that.”

Related Links:
University of Missouri 

Gold Supplier
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Medical Heating Blanket
Electrical Suction Machine

Print article



view channel
Image: The WHO has conditionally recommended the use of algorithms in assisting with pediatric tuberculosis diagnosis (Photo courtesy of Pexels)

New Evidence-Based Algorithms Could Improve Diagnosis of Pediatric Tuberculosis

Tuberculosis (TB) continues to be one of the most prevalent causes of death among younger populations worldwide. Research indicates that over 96% of the deadly TB cases in children under the age of 15... Read more

Surgical Techniques

view channel
Image: Robotic bronchoscopy is used to biopsy lung nodules to detect the presence of lung cancer (Photo courtesy of Pexels)

Robotic Bronchoscopy Enables Doctors to Biopsy Lung Nodules from Hard-to-Reach Areas

Bronchoscopy is a procedure commonly used to diagnose lung cancer and other lung diseases by biopsying lung nodules. Traditional bronchoscopy involves a doctor manually guiding a thin tube, known as a... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more


view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.