We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Ingestible Sensor Could Replace Invasive Procedures for Diagnosing GI Motility Disorders

By HospiMedica International staff writers
Posted on 14 Feb 2023
Print article
Image: The sensor sends its location as it moves through the GI tract to reveal where slowdowns in digestion may occur (Photo courtesy of MIT)
Image: The sensor sends its location as it moves through the GI tract to reveal where slowdowns in digestion may occur (Photo courtesy of MIT)

Gastrointestinal (GI) motility disorders such as constipation, gastro esophageal reflux disease, and gastroparesis affect millions of people globally and can occur in any part of the digestive tract, stopping the movement of food through the tract. Doctors generally diagnose the condition by using nuclear imaging studies or X-rays, or inserting catheters with pressure transducers that can sense contractions of the GI tract. Now, a team of engineers has demonstrated an ingestible sensor that allows its location to be monitored as it moves through the digestive tract and could help doctors diagnose GI motility disorders more easily.

The tiny sensor developed by engineers at MIT (Cambridge, MA, USA) and Caltech (Pasadena, CA, USA) detects a magnetic field created by an electromagnetic coil located outside the body. The strength of the field varies depending upon the distance from the coil, as a result of which the sensor’s position is calculated based on its measurement of the magnetic field. In the new study, the researchers showed that they could use the technology to track the sensor as it moved through the digestive tract of large animals. The device could offer an alternative to more invasive procedures, such as endoscopy, that are presently being used to diagnose GI motility disorders.

The MIT and Caltech researchers set out to develop an alternative for diagnosing GI motility disorders that was less invasive and could be done at the patient’s home. They worked on developing a capsule that could be swallowed and would transmit a signal to reveal its position in the GI tract. This would enable doctors to identify the precise part of the tract that was causing a slowdown and decide the appropriate treatment needed for the patient’s condition. They achieved this by taking advantage of the fact that the field produced by an electromagnetic coil becomes predictably weaker with the increase in the distance from the coil. The magnetic sensor developed by the researchers is tiny enough to fit inside an ingestible capsule and measures the surrounding magnetic field. It then uses that information to calculate its distance from a coil located outside the body.

In order to accurately pinpoint the location of a device inside the body, the system has another sensor that remains outside the body and acts as a reference point. Researchers can compare the position of this sensor that can be taped to the skin with the position of the sensor inside the body to precisely calculate where the ingestible sensor lies in the GI tract. The ingestible sensor also features a wireless transmitter that transmits the magnetic field measurement to a nearby computer or smartphone. The system’s current version can take a measurement any time it receives a wireless trigger from a smartphone and can also be programmed to take measurements at specific intervals. It can detect a magnetic field from electromagnetic coils within a distance of 60 centimeters or less. The coils could be placed in the patient’s backpack or jacket, or even the back of a toilet, according to the researchers, thus enabling the ingestible sensor to take measurements whenever it comes within range of the coils.

The researchers used a large animal model to test their new system by placing the ingestible capsule in the stomach and then tracking its location as it moved through the digestive tract over a period of several days. In the first experiment, the team delivered two magnetic sensors attached to each other by a small rod that allowed them to know the exact distance between them. They then compared their magnetic field measurements to this known distance and found the measurements to be accurate to a resolution of about two millimeters which was far higher than the resolution of the magnetic-field-based sensors developed earlier. The team then went on to perform tests using a single ingestible sensor accompanied by an external sensor attached to the skin.

By measuring the distance from each sensor to the coils, the research team demonstrated that it was possible to track the ingested sensor as it moved from the stomach to the colon and was finally excreted. Upon comparing the accuracy of their strategy with the measurements taken by X-ray, the researchers found them to be accurate within 5 to 10 millimeters. Such level of monitoring can allow doctors to more easily identify the section of the GI tract causing a slowdown in digestion. The researchers now plan to develop manufacturing processes for the system in collaboration with others and further characterize its performance in animals, ultimately paving the way to its testing in human clinical trials.

“Many people around the world suffer from GI dysmotility or poor motility, and having the ability to monitor GI motility without having to go into a hospital is important to really understand what is happening to a patient,” said Giovanni Traverso, an associate professor of mechanical engineering at MIT and a gastroenterologist at Brigham and Women’s Hospital. “The ability to characterize motility without the need for radiation, or more invasive placement of devices, I think will lower the barrier for people to be evaluated.”

Related Links:

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
Barrier Mount
RayShield SideWinder
Orthopedic Traction Set

Print article



view channel
Image: The WHO has conditionally recommended the use of algorithms in assisting with pediatric tuberculosis diagnosis (Photo courtesy of Pexels)

New Evidence-Based Algorithms Could Improve Diagnosis of Pediatric Tuberculosis

Tuberculosis (TB) continues to be one of the most prevalent causes of death among younger populations worldwide. Research indicates that over 96% of the deadly TB cases in children under the age of 15... Read more

Surgical Techniques

view channel
Image: Robotic bronchoscopy is used to biopsy lung nodules to detect the presence of lung cancer (Photo courtesy of Pexels)

Robotic Bronchoscopy Enables Doctors to Biopsy Lung Nodules from Hard-to-Reach Areas

Bronchoscopy is a procedure commonly used to diagnose lung cancer and other lung diseases by biopsying lung nodules. Traditional bronchoscopy involves a doctor manually guiding a thin tube, known as a... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more


view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.