We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Universal Connector Makes It Simpler and Quicker to Assemble Stretchable Healthcare Devices

By HospiMedica International staff writers
Posted on 16 Feb 2023
Print article
Image: In stretching tests, modules were able to withstand stretching of up to seven times their original length before breaking (Photo courtesy of NTU Singapore)
Image: In stretching tests, modules were able to withstand stretching of up to seven times their original length before breaking (Photo courtesy of NTU Singapore)

Stretchable devices such as soft robots and wearable healthcare devices are assembled with the help of various modules having different material characteristics like softness or rigidity. However, the commercial pastes presently being applied for connecting the modules are usually unable to transmit mechanical and electrical signals with reliability when they become deformed or break easily. For creating a reliably functioning device, module connectors (interfaces) have to be custom-built with sufficient strength to perform the tasks for which they are built. Easily assembling stretchable devices while retaining their strength and reliability under stress still remains a challenge that has limited their development.

Now, an international team led by researchers from Nanyang Technological University, Singapore (NTU Singapore, Nanyang Ave, Singapore) has developed a universal connector for assembling stretchable devices simply and quickly. Their BIND interface (biphasic, nano-dispersed interface) simplifies the assembly of stretchable devices and also offers an excellent mechanical and electrical performance. Similar to building structures using Lego blocks, it is possible to assemble high-performing stretchable devices by just pressing together any module bearing the BIND interface. This easy and simple method of connecting electronic modules could allow producers to assemble future stretchable devices by using ‘plug-and-play’ components based on their designs.

The researchers developed the BIND interface by thermally evaporating metal (gold or silver) nanoparticles to create a robust interpenetrating nanostructure inside a soft thermoplastic generally used in stretchable electronics (styrene-ethylene-butylene-styrene). This nanostructure offers continuous mechanical as well as electrical pathways, enabling modules with BIND connections to remain robust despite being deformed. The team conducted experiments in which the modules joined by the interface demonstrated an excellent performance. During stretching tests, the modules could be stretched up to seven times their original length before finally breaking. In addition, the electrical transmission of the modules remained robust up to 2.8 times the original length when stretched. The researchers also evaluated the interfacial toughness of the BIND interface by using a standard Peel Adhesion Test, in which the adhesive strength between two modules is put to test by pulling it apart at a constant speed at 180°. In the case of encapsulation modules, the researchers found the BIND interface to be 60 times tougher than conventional connectors.

Additionally, the researchers demonstrated the feasibility of its use in real-life applications by building stretchable devices using the BIND interface, and then testing them on rat models and human skin. The recordings from the stretchable monitoring device attached to rat models displayed reliable signal quality despite interferences with the wirings like touching or tugging. The device stuck on human skin managed to collect high-quality electromyography (EMG) signals which measure the electrical activity generated in muscles during contraction and relaxation, even underwater. The research team has filed an international patent and is now developing a more efficient printing technology to expand the material choice and final application of their innovation. This will accelerate its transition from the laboratory to the designing and manufacturing of products.

“Our breakthrough innovation makes it very easy to form and use a stretchable device since it works like a ‘universal connector’. Any electronic module bearing the BIND interface can be connected simply by pressing them together for less than 10 seconds,” said Chen Xiaodong, lead author of the study. “Moreover, we do away with the cumbersome process of building customized interfaces for specific systems, which we believe will help accelerate the development of stretchable devices.”

“These impressive results prove that our interface can be used to build highly functional and reliable wearable devices or soft robots,” added Dr. Jiang Ying, Research Fellow at the NTU School of Materials Science & Engineering. “For example, it can be used in high-quality wearable fitness trackers where users can stretch, gesture, and move in whichever way they are most comfortable with, without impacting the device’s ability to capture and monitor their physiological signals.”

Related Links:
NTU Singapore

Gold Supplier
12-Channel ECG
Surgical Lighting System
HarmonyAIR A-Series
Ultrasound System
Ultimus 9E
Flexible Video Endocscopy System

Print article



view channel
Image: The WHO has conditionally recommended the use of algorithms in assisting with pediatric tuberculosis diagnosis (Photo courtesy of Pexels)

New Evidence-Based Algorithms Could Improve Diagnosis of Pediatric Tuberculosis

Tuberculosis (TB) continues to be one of the most prevalent causes of death among younger populations worldwide. Research indicates that over 96% of the deadly TB cases in children under the age of 15... Read more

Surgical Techniques

view channel
Image: Robotic bronchoscopy is used to biopsy lung nodules to detect the presence of lung cancer (Photo courtesy of Pexels)

Robotic Bronchoscopy Enables Doctors to Biopsy Lung Nodules from Hard-to-Reach Areas

Bronchoscopy is a procedure commonly used to diagnose lung cancer and other lung diseases by biopsying lung nodules. Traditional bronchoscopy involves a doctor manually guiding a thin tube, known as a... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more


view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.