We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics .

Download Mobile App

Breathable, Antimicrobial Smart Fabrics Made of Liquid Metal Could Monitor ECG Heart Signals

By HospiMedica International staff writers
Posted on 27 Apr 2023
Print article
Image: The fabric becomes conductive when coated with a special `breathable` metallic layer (Photo courtesy of Flinders University)
Image: The fabric becomes conductive when coated with a special `breathable` metallic layer (Photo courtesy of Flinders University)

A team of international scientists has developed a self-repairing metallic coating treatment for clothing and wearable textiles that can repel bacteria and even monitor a person's electrocardiogram (ECG) heart signals.

Researchers from North Carolina State University (Raleigh, NC, USA), Flinders University (Bedford Park, Australia) and South Korea have reported that the conductive circuits formed by liquid metal (LM) particles can revolutionize wearable electronics and pave the way for advancements in human-machine interfaces, such as soft robotics and health monitoring systems. The "breathable" electronic textiles possess unique self-healing capabilities, even when cut. When significant force is applied to the coated textiles, the particles combine to form a conductive path, enabling circuits to maintain conductivity when stretched. The technique involves dip-coating fabric in an LM particle suspension at room temperature.

The LM-coated textiles provide effective antimicrobial protection against Pseudomonas aeruginosa and Staphylococcus aureus. This germ-resistant feature not only imparts protective qualities to the treated fabric but also prevents the porous material from contamination during extended wear or contact with others. Gallium-based liquid metal particles exhibit a low melting point, metallic electrical conductivity, high thermal conductivity, virtually no vapor pressure, low toxicity, and antimicrobial properties. LMs possess both fluidic and metallic characteristics, making them promising for applications in microfluidics, soft composites, sensors, thermal switches, and microelectronics. A key advantage of LM is that it can be deposited and patterned at room temperature onto surfaces in ways not feasible with solid metals.

“The conductive patterns autonomously heal when cut by forming new conductive paths along the edge of the cut, providing a self-healing feature which makes these textiles useful as circuit interconnects, Joule heaters and flexible electrodes to measure ECG signals,” said Flinders University medical biotechnology researcher Dr. Khanh Truong.

Related Links:
NC State University
Flinders University

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Specimen Collection & Transport
X-Ray System
Leonardo DR mini III
Gold Supplier
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)

Print article


Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.