We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Implantable Device Could Eliminate Insulin Injections for Diabetics

By HospiMedica International staff writers
Posted on 20 Sep 2023

A potential method of managing Type 1 diabetes is the transplantation of pancreatic islet cells capable of producing insulin. More...

This could help eliminate the need for regular insulin shots. The downside is that these cells eventually get depleted of oxygen, halting their insulin production. To address this issue, engineers have created a new implantable device that not only houses hundreds of thousands of these insulin-making islet cells but also contains its own mechanism for producing oxygen by splitting water vapor found naturally in the body.

In order to develop the implantable device, the team of engineers at MIT (Cambridge, MA, USA) used a novel method aimed at limitless oxygen generation by splitting water. The key element inside the device is a proton-exchange membrane, a technology initially developed for hydrogen production in fuel cells. This membrane separates the water vapor in the body into hydrogen, which safely diffuses, and oxygen, which is stored in a chamber that feeds the islet cells via a thin, oxygen-permeable membrane. The team is now considering scaling up the device to the size of a chewing gum stick for trials in people with Type 1 diabetes.

In tests involving diabetic mice, the device was able to maintain stable blood glucose levels for a duration of at least one month. Implanting medical devices usually results in the immune system creating scar tissue, known as fibrosis, which can impair the device's function. Although scar tissue did form in this study, the device remained effective in regulating blood sugar levels, suggesting that insulin was still able to flow out and glucose to flow in. While diabetes treatment remains their primary goal, the researchers believe the technology could be modified to manage other conditions requiring continuous delivery of therapeutic proteins.

“You can think of this as a living medical device that is made from human cells that secrete insulin, along with an electronic life support-system. We’re excited by the progress so far, and we really are optimistic that this technology could end up helping patients,” said Daniel Anderson, a professor in MIT’s Department of Chemical Engineering.

“We’re optimistic that it will be possible to make living medical devices that can reside in the body and produce drugs as needed,” Anderson added. “There are a variety of diseases where patients need to take proteins exogenously, sometimes very frequently. If we can replace the need for infusions every other week with a single implant that can act for a long time, I think that could really help a lot of patients.”

Related Links:
MIT 


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
ow Frequency Pulse Massager
ET10 L
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.