We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Thin-Film Neural Electrodes Placed Directly on Brain Tissue Can Diagnose and Treat Epilepsy

By HospiMedica International staff writers
Posted on 25 Sep 2023
Print article
Image: Flexible thin-film electrodes placed directly on brain tissue have shown promise for diagnosis and treatment of epilepsy (Photo courtesy of Tokyo Tech)
Image: Flexible thin-film electrodes placed directly on brain tissue have shown promise for diagnosis and treatment of epilepsy (Photo courtesy of Tokyo Tech)

Analyzing brain activity is crucial for diagnosing conditions like epilepsy and other mental health disorders. Among various methods, electroencephalography (EEG) is considered the least intrusive, using electrodes placed on the scalp to capture brain signals. However, the downside is that EEG has limited resolution, as brain signals get distorted and weakened by the time they reach the scalp. Electrocorticography (ECoG), on the other hand, places electrodes directly onto the brain's surface, offering much better recordings due to their proximity to the area of interest. These electrodes can also send electrical pulses to manage symptoms like epileptic seizures. But there's a hitch: conventional ECoG electrodes don't usually fit well with the brain's shape and mechanical properties, leading to issues like increased brain pressure. Although softer electrodes have been created to address this issue, they tend to lack durability or involve complex manufacturing steps. Now, researchers have designed flexible thin-film electrodes placed directly on brain tissue that align well with the brain's mechanical properties. This new design improves ECoG recordings and also allows for more targeted stimulation of neurons.

A research team at Tokyo Institute of Technology (Tokyo, Japan) has developed a novel flexible neural electrode made from a material known as polystyrene-block-polybutadiene-block-polystyrene (SBS). Using an inkjet printer, the team fabricated conductive wiring on the electrode with gold nanoink and then proceeded to cover the circuit by stacking another SBS layer as insulation, with laser-perforated microchannels as measurement or stimulation points. The team undertook extensive mechanical testing and simulations to show that these electrodes conform well to the brain's irregular shape. The straightforward design and manufacturing process also make these electrodes practical for broader applications.

To validate the effectiveness of their electrodes, the researchers conducted several tests on rat models with epilepsy. With their new ECoG electrodes, they were able to accurately gauge brain responses when the rats' whiskers were mechanically affected. Moreover, the electrodes were used to visualize seizure activities that were chemically induced. They were even able to trigger specific movements in the rats by sending electric pulses through particular channels on the electrode, indicating its potential for targeted brain stimulation. Notably, these electrodes did not result in any inflammation or negative effects in the rats' brains, even weeks after the tests. The team aims to refine this promising technology for future clinical use.

“As far as we know, this is the first study to demonstrate such ultra-conformable ECoG electrodes based on printed electronics, which closely match the mechanical properties of brain tissue,” said Associate Professor Toshinori Fujie of Tokyo Tech who led the team. “The integration of our thin-film electrode with an implantable device could make it even less invasive and more sensitive to the brain’s abnormal electrical activity. This would enable improved diagnostics and therapeutic strategies for the management of intractable epilepsy.”

Related Links:
Tokyo Institute of Technology

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Specimen Collection & Transport
New
Ferromagnetic Hand-Held Detector
FerrAlert Target Scanner
Gold Supplier
Temperature Monitor
ThermoScan Temperature Monitoring Unit

Print article
Detecto

Channels

Surgical Techniques

view channel
Image: A wireless energy-harvesting and storage device (Photo courtesy of Science Advances 2023)

Soft Supercapacitor Could Power Implantable Devices

The field of bioelectronic devices is rapidly advancing, offering new possibilities for health monitoring and the treatment of diseases. A critical aspect of these devices is their power source.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The patented 3TR technology delivers proven PCR-level sensitivity and specificity (Photo courtesy of 3EO Health)

High-Performing Low-Cost Diagnostic Platform Provides Molecular Results At Near Antigen Pricing

When it comes to point-of-care respiratory diagnostic products, there's often a trade-off between performance and affordability. Current molecular diagnostic solutions are high-performing but expensive... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.