We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Novel Algorithms Predict Cardiovascular Outcomes at Point-Of-Care Using ECG Data

By HospiMedica International staff writers
Posted on 28 Nov 2024
Print article
Image: Using machine learning on ECG data can help doctors predict cardiovascular outcomes more accurately (Photo courtesy of 123RF)
Image: Using machine learning on ECG data can help doctors predict cardiovascular outcomes more accurately (Photo courtesy of 123RF)

A significant number of strokes with an unknown cause are linked to underlying, subclinical, paroxysmal atrial fibrillation (AFib), a condition where the heart beats irregularly for brief periods without causing noticeable symptoms. These AFib-related strokes can be prevented with blood-thinning medications. The standard approach for detecting AFib is the implantation of a loop recorder, a device placed under the skin to monitor heart activity and detect AFib. This allows healthcare providers to decide whether patients should use blood thinners to prevent future strokes. Now, researchers are leveraging machine learning and existing electrocardiogram (ECG) data to assist doctors in making more accurate predictions.

Researchers at Penn State (University Park, PA, USA) are developing new algorithms capable of predicting cardiovascular outcomes at the point-of-care. In an initial pilot study published in Heart Rhythm, they presented a model that could predict whether a patient with an unexplained stroke would develop AFib by analyzing a single heartbeat from a common and inexpensive heart test: the standard 12-lead ECG, which records the electrical activity of the heart. The research team sought to explore whether they could predict AFib using a 12-lead ECG rather than relying on a loop recorder.

The team used a small dataset of existing ECG data from Penn State, which included patients with cryptogenic stroke—stroke without a known cause—who had previously had loop recorders implanted, as well as data from standard 12-lead ECGs. Using machine learning algorithms, they created a model that could analyze a patient’s 12-lead ECG and predict the likelihood of developing AFib. The model correctly predicted the outcome for 80% of the patients in the test cohort. Moving forward, the team plans to expand their database to enhance the model's applicability. The researchers achieved these high levels of accuracy by utilizing data augmentation techniques, which helped improve the predictive performance.

“With stronger algorithms and a larger database, we can predict cardiovascular outcomes at significantly less cost,” said Ankit Maheshwari, assistant professor of medicine at Penn State and lead researcher on the project. “This pilot study shows that even with a smaller group of 200 to 300 patients, we could create a useful predictive model. Our goal is to organize the 1.8 million ECGs in the University’s medical record system into a searchable database to facilitate large volume ECG analysis to support future projects aimed at utilizing a 12-lead ECG to predict cardiovascular outcomes and improve patient care.”

 

Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Blanket Warming Cabinet
EC250
New
Ultrasonic Cleaner
Cole-Parmer Ultrasonic Cleaner with Digital Timer

Print article

Channels

Surgical Techniques

view channel
Image: Synthetic images generated by each diffusion model contrasted with the corresponding real textural images of four types of polyps (Photo courtesy of UT at Austin)

AI-Assisted Imaging to Assist Endoscopists in Colonoscopy Procedures

Colorectal cancer is a major health concern in the United States, with the likelihood of developing the disease being 1 in 25 for women and 1 in 23 for men. Polyps, which are precursors to cancer, can... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.