We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App

Self-Healing, Electrically Conducive, Soft Material Opens Doors to Next-Gen Wearable Devices

By HospiMedica International staff writers
Posted on 10 Mar 2023
Print article
Image: Researchers have developed the first self-healing, electrically conducive, soft material (Photo courtesy of Carnegie Mellon University)
Image: Researchers have developed the first self-healing, electrically conducive, soft material (Photo courtesy of Carnegie Mellon University)

A team of engineers has developed a novel soft material exhibiting metal-like conductivity and self-healing capabilities. The material is the first of its kind to maintain adequate electrical adhesion required to support digital electronics as well as motors. This advance represents a landmark accomplishment in the domains of soft robotics, electronics, and medicine.

Engineers at Carnegie Mellon University (Pittsburgh, PA, USA) have built a new generation of soft machines and robots known as softbotics that are manufactured using multi-functional materials integrated with sensing, actuation, and intelligence. The research team has developed a novel material, composed of a liquid metal-filled organogel composite, characterized by high electrical conductivity, low stiffness, high stretchability, and self-healing properties. The material has been successfully tested in three applications, including a reconfigurable bioelectrode that measures muscle activity on different parts of the body. The research team demonstrated the material's ability to be reconfigured to obtain electromyography (EMG) readings from various areas of the body. Due to its modular design, the organogel can be adjusted to measure hand activity on anterior muscles of the forearm and calf activity on the back of the leg. This breakthrough paves the way for tissue-electronic interfaces like EMGs and EKGs using soft, reusable materials.

“Softbotics is about seamlessly integrating robotics into everyday life, putting humans at the center,” said lead author Carmel Majidi, Professor of Mechanical Engineering. “Instead of being wired up with biomonitoring electrodes connecting patients to bio measurement hardware mounted on a cart, our gel can be used as a bioelectrode that directly interfaces with body-mounted electronics that can collect information and transmit it wirelessly.”

Related Links:
Carnegie Mellon University

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Solid State Kv/Dose Multi-Sensor
Silver Member
Wireless Mobile ECG Recorder
Electric Bariatric Patient Lifter
SVBL 205

Print article


Surgical Techniques

view channel
Image: The multi-sensing device can be implanted into blood vessels to help physicians deliver timely treatment (Photo courtesy of IIT)

Miniaturized Implantable Multi-Sensors Device to Monitor Vessels Health

Researchers have embarked on a project to develop a multi-sensing device that can be implanted into blood vessels like peripheral veins or arteries to monitor a range of bodily parameters and overall health status.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.