We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Silk MicroRockets Provide Safe Drug Delivery

By HospiMedica International staff writers
Posted on 13 Jul 2016
Print article
Image: Silk microrockets propelled by enzymatic action (Photo courtesy of the University of Sheffield).
Image: Silk microrockets propelled by enzymatic action (Photo courtesy of the University of Sheffield).
Microscopic swimming devices made of biodegradable silk have the potential to be used in the human body for drug delivery and location of cancer cells, claims a new study.

Developed by researchers at the University of Sheffield (United Kingdom), the silk microrockets are just 300 microns in length and 100 microns in diameter, the thickness of a single human hair, and create their own thrust by using an entrapped enzyme as a catalyst, allowing them to swim through biologic fluids. According to the researchers, the use of a biodegradable silk fibroin (SF) rocket and enzymatic fuel removes a major barrier to micro-rockets becoming a reality outside of the laboratory.

The silk microrockets are made using a three-dimensional (3D) reactive inkjet printing method that involves a liquid solution of dissolved SF mixed with an enzyme. The solution is then placed into a 3D inkjet printer, which builds up layers of ink to create the rocket. Printing methanol on the printed construct then triggers a reaction that forms a rigid shape, trapping the enzyme within a silk lattice structure. The enzyme acts as a catalyst, reacting with fuel molecules to produce bubbles that propel the rocket forward. The study describing the silk microrockets was published on June 27, 2016, in SMALL.

“By using a natural enzyme like catalase and silk which are fully biodegradable, our devices are far more biocompatible than earlier swimming devices,” said lead author Xiubo Zhao, PhD, of the department of chemical and biological engineering. “The inkjet printing technique also allows us to digitally define the shape of a rocket before it’s produced. This makes it a lot easier to optimize the shape in order to control the way the device swims.”

Reactive inkjet printing allows two different ink solutions to react together to generate a new compound or alternatively, as used by the researchers, to produce a change in polymorphic form of silk. Reactive inkjet printing also shares the advantages of conventional inkjet printing, allowing straightforward manufacture of 3D objects with well-controlled shape and size, for example, by utilizing a layer-by-layer approach.

Related Links:
University of Sheffield


Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
New
Vital Signs Monitor
Aurus 20 A
New
Orthopedic Table
GS GS-HV Series
New
Capnograph/Pulse Oximeter
Handleld Capnograph/Pulse Oximeter

Print article

Channels

AI

view channel
Image: MyoVista Wavelet technology utilizes AI for early detection of heart disease (Photo courtesy of Heart Test Laboratories)

Novel ECG Technology Utilizes AI for Early Detection of Heart Disease

Cardiovascular disease is responsible for 17.9 million deaths every year, or about 32% of all deaths worldwide. Every week, millions of electrocardiographs (ECGs) are performed across the world, making... Read more

Surgical Techniques

view channel
Image: The Vena BDAC provides a superior solution to distal navigation (Photo courtesy of Vena Medical)

Category-Defining Balloon Distal Access Catheter Allows Surgeons to Get Much Closer to Blood Clots

Thrombectomy is a minimally invasive procedure for removing a blood clot and has now become standard of care treatment for patients with an acute ischemic stroke (AIS) secondary to a Large Vessel Occlusion (LVO).... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.