Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Steerable Lung Robot Reaches Targets Not Possible Even With Robotic Bronchoscope

By HospiMedica International staff writers
Posted on 22 Sep 2023

Lung cancer is one of the prime reasons for cancer-related deaths worldwide. More...

Detecting and reaching small tumors lodged deep within lung tissue is a major hurdle for medical professionals. To overcome this obstacle, researchers have been working on a highly flexible, yet robust, robot that can navigate through lung tissue.

The research by UNC School of Medicine (Chapel Hill, NC, USA) reached a new milestone with the team proving that their robot can autonomously travel from one point to another while avoiding crucial anatomical structures like small airways and blood vessels in a living lab model. The autonomous steerable needle robot comprises various elements. A mechanical controller offers a controlled thrust of the needle, allowing it to move both forward and backward. Made from a nickel-titanium alloy, the needle itself is designed to enable steering along curved paths and is laser-etched to enhance its bendability and enable smooth movement through tissue.

As it moves forward, the needle's etched design enables it to navigate around obstacles effortlessly. Additional instruments, like catheters, can be used with the needle to execute procedures such as lung biopsies. In order to drive through tissue, the needle relies on CT scans and artificial intelligence to build a 3D map of the subject’s lung, incorporating features like airways, blood vessels, and the target area. Once set in its starting position, the AI-powered software commands the needle to autonomously travel between designated points while avoiding vital structures.

Accounting for the lungs' constant movement due to breathing presents an additional challenge. The lungs are unique in that they continually expand and contract, making precise targeting tricky. The researchers equate it to aiming at a moving target. To overcome this, they tested the robot in a lab model that mimicked intermittent breath-holding. Each time the subject holds their breath, the robot is programmed to move forward.

“This technology allows us to reach targets we can’t otherwise reach with a standard or even robotic bronchoscope,” said Jason Akulian, MD MPH, in the UNC Department of Medicine. “It gives you that extra few centimeters or few millimeters even, which would help immensely with pursuing small targets in the lungs.”

“The autonomous steerable needle we’ve developed is highly compact, but the system is packed with a suite of technologies that allow the needle to navigate autonomously in real-time,” added Ron Alterovitz, PhD,, the principal investigator on the project. “It’s akin to a self-driving car, but it navigates through lung tissue, avoiding obstacles like significant blood vessels as it travels to its destination.”

Related Links:
UNC School of Medicine


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Ultrasound Needle Guidance System
SonoSite L25
ow Frequency Pulse Massager
ET10 L
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.