We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics .

Download Mobile App

Innovative Technique for Distinguishing Tumor from Normal Tissue to Improve Surgical Resections

By HospiMedica International staff writers
Posted on 17 Oct 2023
Print article
Image: The visual and quantitative technique has been tested using specimens from multiple cancer types (Photo courtesy of Mass General Brigham)
Image: The visual and quantitative technique has been tested using specimens from multiple cancer types (Photo courtesy of Mass General Brigham)

Taking out a tumor from a patient while leaving healthy tissue untouched is a delicate operation, often dependent on the surgeon's eyes and hands to guide the scalpel. Several technologies like fluorescence imaging and advanced microscopy have been explored to better visualize tumors during surgery. However, these methods haven't gained widespread use and are generally applicable only to certain kinds or subtypes of cancer. Fluorescence imaging involves using dyes to highlight cancer-specific molecules, but traditional imaging methods can be unreliable in identifying the boundaries between tumors and healthy tissue. This is due to the varying expression of these molecules both within and among different tumor types. Now, a new visualization tool combines high-speed cameras and fluorescent injection to differentiate tumor tissue from normal tissue across cancer types during resection surgery.

The new imaging technology, known as fluorescence lifetime (FLT) imaging, was developed by a team led by investigators at Mass General Brigham (Somerville, MA, USA). Instead of solely depending on dyes to target cancerous cells, the new method employs high-speed cameras to observe changes in the property of light emitted by the tissue. Prior studies in animal models had shown that when mice with tumors were injected with a dye called indocyanine green (ICG), the tumor tissue displayed a longer fluorescence lifetime compared to the surrounding healthy tissue. Capitalizing on this discovery, the team began to test this method on human samples, specifically those from patients about to undergo liver surgery who had been given an ICG injection at least one day prior.

Expanding on this initial work, the researchers partnered with multiple institutions to assess tissue samples from over 60 patients, suffering from various types of cancer including liver, brain, tongue, skin, bone, and soft tissue. They discovered that the FLT shift was consistent at the cellular level across these different types of tumors. Moreover, the method could also differentiate between benign and cancerous lymph nodes. It achieved an impressive accuracy rate of over 97% in distinguishing tumor tissue from healthy tissue. It's worth noting that while ICG has received FDA approval for other medical uses, it is not yet approved for clinical use as a tumor marking agent. The researchers are planning a larger clinical trial to further investigate the safety and effectiveness of using FLT imaging with ICG in tumor identification during surgical procedures.

“This technology has taken us to the brink of a revolution in solid tumor surgery,” said Mark Varvares, MD, chief of Otolaryngology–Head and Neck Surgery at Mass Eye and Ear. “By using the advanced imaging techniques combined with the dye, surgeons in the near future will have the ability to more completely remove all malignant cells during tumor surgery while at the same time, with confidence, spare normal tissue, enhancing postoperative function and in some cases, the patient’s appearance.”

Related Links:
Mass General Brigham 

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Specimen Collection & Transport
Medical Monitor
Gold Supplier
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)

Print article


Critical Care

view channel
Image: The BASHIR Endovascular Catheter was recently approved by the U.S. FDA (Photo courtesy of THROMBOLEX)

Novel Endovascular Catheter Opens Blocked Arteries Deep Within Lungs

The occlusion of small lung arteries is the main cause of the reduction in blood flow in patients with acute pulmonary embolism. The more occlusions that a patient has, the lower the chances of survival.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.