We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI-Based Approach to Image Reconstruction Provides Faster and Clearer MRI Scans

By HospiMedica International staff writers
Posted on 28 Aug 2018
Print article
Image: MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right (Photo courtesy of Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital).
Image: MR images reconstructed from the same data with conventional approaches, at left, and AUTOMAP, at right (Photo courtesy of Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital).
Researchers from the Massachusetts General Hospital (MGH) Martinos Center for Biomedical Imaging (Charlestown, MA, USA) and Harvard University (Cambridge, MA, USA) have used artificial intelligence to develop a new type of medical imaging technology called AUTOMAP, which produces higher-quality images from less information. This cuts down the amount of radiation from CT and PET scans, thus reducing the duration of an MRI scan. The research was funded by the National Institute for Biomedical Imaging and Bioengineering (NIBIB).

AUTOMAP uses machine learning and software, referred to as neural networks — inspired by the brain’s ability to process information and perceive or make choices. It churns through—and learns from—data from existing images and applies mathematical approaches in reconstructing new ones. AUTOMAP finds the best computational strategies to produce clear, accurate images for various types of medical scans.

For their study, the researchers used a set of 50,000 MRI brain scans from the NIH-supported Human Connectome Project to train the AUTOMAP system to reconstruct images and successfully demonstrated improvements in reducing noise and reconstruction artifacts as compared to the existing methods. The researchers found that the AUTOMAP system could produce brain MRI images with better signal and less noise than conventional MRI techniques.

“The signal-to-noise ratio improvements we gain from this artificial intelligence-based method directly accelerates image acquisition on low-field MRI,” said lead author Bo Zhu, Ph.D., postdoctoral research fellow in radiology at Harvard Medical School and in physics at the MGH Martinos Center.

“This technology could become a game changer, as mainstream approaches to improving the signal-to-noise ratio rely heavily on expensive MRI hardware or on prolonged scan times,” said Shumin Wang, Ph.D., director of the NIBIB program in Magnetic Resonance Imaging. “It may also be advantageous for other significant MRI applications that have been plagued by low signal-to-noise ratio for decades, such as multi-nuclear spectroscopy.”

Related Links:
Massachusetts General Hospital Martinos Center for Biomedical Imaging
Harvard University

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Enterprise Imaging & Reporting Solution
Syngo Carbon

Print article

Channels

Critical Care

view channel
Image: A machine learning tool can identify patients with rare, undiagnosed diseases years earlier (Photo courtesy of 123RF)

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

Patients suffering from rare diseases often endure extensive delays in receiving accurate diagnoses and treatments, which can lead to unnecessary tests, worsening health, psychological strain, and significant... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.