We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




First-Ever Mpox Rapid Test Can Be Adapted for Other Emerging Diseases

By HospiMedica International staff writers
Posted on 20 Apr 2023
Print article
Image: Images showing the nano-assembly mpox rapid test before (a) and after (e) the addition of mpox DNA (Photo courtesy of Penn State)
Image: Images showing the nano-assembly mpox rapid test before (a) and after (e) the addition of mpox DNA (Photo courtesy of Penn State)

Monkeypox, or Mpox virus, is mainly transmitted through close physical contact and causes a disease with symptoms similar to smallpox, albeit less severe. Recent research indicates that individuals can transmit the Mpox virus to others even before symptoms manifest, making early detection through testing essential for mitigating the spread. Current therapeutics and two-dose vaccines are inadequate for preventing transmission, leaving rapid diagnosis as the sole viable option for disease containment. However, polymerase chain reaction (PCR), the only FDA-approved test for Mpox, has several limitations, such as complex sample collection, transportation, and limited access to advanced instrumental facilities. Presently, tests necessitate healthcare providers to swab lesions and send samples to labs for analysis, a process that can take days.

Now, a team of researchers led by Penn State (University Park, PA, USA) has developed the first rapid test for Mpox, based on an innovative technology that may also be adaptable for other emerging diseases. The selective molecular sensor can detect the virus within minutes without relying on high-end instrumental techniques like PCR. The method employs nanomaterials heterostructures, consisting of zero-dimensional spherical gold nanoparticles and two-dimensional hafnium disulfide nanoplatelets, to create a platform technology capable of detecting trace amounts of genetic material in biological samples.

While nanoparticles have previously been utilized to observe changes in biological systems, this is the first instance of using two nanoscale objects in different dimensions to identify an emerging pathogen. The rapid test, which requires only a small lesion swab sample and a brief waiting period for results, could significantly reduce the virus's transmission rate. The researchers are currently testing the system against other pathogens to verify its wide-ranging applicability for viral detection. Once the test is clinically validated, they will seek commercial partners to collaborate on bringing the technology to market.

“This is a major breakthrough in terms of how we manage the virus, as it is the first rapid test for mpox,” said Dipanjan Pan, Penn State’s Dorothy Foehr Huck & J. Lloyd Huck Chair Professor in Nanomedicine, who led the study. “But it’s also important to note that this new technology can help us to prepare for the next epidemic or even pandemic. With slight modification of the molecules used for targeting the genetic sequences, we will be able to specifically detect other viruses, bacteria or fungi using the same method.”

Related Links:
Penn State 

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80

Print article

Channels

Critical Care

view channel
Image: A machine learning tool can identify patients with rare, undiagnosed diseases years earlier (Photo courtesy of 123RF)

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

Patients suffering from rare diseases often endure extensive delays in receiving accurate diagnoses and treatments, which can lead to unnecessary tests, worsening health, psychological strain, and significant... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.