We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Feather Safety Razor

Download Mobile App




Artificial Intelligence Accurately Detects Fractures on X-Rays

By HospiMedica International staff writers
Posted on 13 Jan 2022
Print article
Image: Examples of fractures detected using the AI BoneView algorithm (Photo courtesy of BUSM)
Image: Examples of fractures detected using the AI BoneView algorithm (Photo courtesy of BUSM)
A new study reveals that artificial intelligence (AI) assistance improves the sensitivity and specificity of radiology readers searching for skeletal fractures.

Researchers at Boston University School of Medicine (BUSM; MA, USA), Stony Brook University (SBU; NY, USA), and other institutions conducted a study of the Gleamer (Paris, France) AI BoneView algorithm, which can detect fractures of the limbs, pelvis, torso, lumbar spine, and rib cage. Six types of readers (radiologists, orthopedic surgeons, emergency physicians, physician assistants, rheumatologists, and family physicians) examined set 480 data sets, both with and without AI BoneView.

The results revealed that using AI assistance helped reduce missed fractures by 29% and increased readers' sensitivity by 16% for a single fracture, and by 30% for exams with more than one fracture, while improving specificity by 5%. The improvement in sensitivity was significant in all locations, but especially in the shoulder, clavicle, and thoracolumbar spine. AI assistance also shortened X-ray reading time by an average of 6.3 seconds per patient. The study was published on December 21, 2021, in Radiology.

“Our AI algorithm can quickly and automatically detect x-rays that are positive for fractures and flag those studies in the system so that radiologists can prioritize reading x-rays with positive fractures,” said corresponding author Professor Ali Guermazi, MD, PhD, of BUSM. “The system also highlights regions of interest with bounding boxes around areas where fractures are suspected. This can potentially contribute to less waiting time at the hospital or clinic before patients can get a positive diagnosis of fracture.”

Missed fractures on radiographs are one of the most common causes of diagnostic discrepancies between initial interpretations by non-radiologists or residents and the final read by board-certified radiologists, leading to preventable harm or delay in care to the patient. In addition, inconsistencies in radiographic diagnosis of fractures are more common during the evening and overnight hours, likely related to non-expert reading and fatigue. In patients with multiple traumas, the proportion of missed injuries, including fractures, can be high on the forearm and hands (6.6%) and feet (6.5%).

Related Links:
Boston University School of Medicine
Stony Brook University
Gleamer



Print article

Channels

Critical Care

view channel
Image: Triage Cardiac Panel is a rapid, POC fluorescence immunoassay used with Triage MeterPro (Photo courtesy of Quidel)

Quidel Triage Cardiac Panel Facilitates Rapid POC Diagnosis of Chest Pain Patients in ED

Chest and abdominal pain are the most common reasons that persons aged 15 years and over visit the emergency department (ED). Because both emergency and non-emergency care are provided, symptoms vary widely... Read more

Surgical Techniques

view channel
Image: Resolute Onyx DES helps address all DES needs and numerous patient anatomies (Photo courtesy of Medtronic)

Medtronic’s Latest Generation Drug-Eluting Coronary Stent System Offers Dual-Layer Balloon Technology

Coronary artery disease (CAD) is one of the leading causes of death and is caused by plaque buildup on the inside of the coronary arteries. These plaque deposits can narrow or clog the inside of the arteries,... Read more

Patient Care

view channel
Image: Future wearable health tech could measure gases released from skin (Photo courtesy of Pexels)

Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases

Most research on measuring human biomarkers, which are measures of a body’s health, rely on electrical signals to sense the chemicals excreted in sweat. But sensors that rely on perspiration often require... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.