We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics .

Download Mobile App




AI Tool Outperforms Human Pathologists in Predicting Survival after Colorectal Cancer Diagnosis

By HospiMedica International staff writers
Posted on 14 Apr 2023
Print article
Image: AI tool predicts colon cancer survival and treatment response (Photo courtesy of Freepik)
Image: AI tool predicts colon cancer survival and treatment response (Photo courtesy of Freepik)

Colorectal cancer, the second most lethal cancer worldwide, exhibits varying behavior even among individuals with similar disease profiles who undergo the same treatment. Now, a new artificial intelligence (AI) model may now offer valuable insight to doctors making prognoses and determining treatments for patients with colorectal cancer.

Researchers at Harvard Medical School (Boston, MA, USA) and National Cheng Kung University (Tainan, Taiwan) have developed a tool called MOMA (Multi-omics Multi-cohort Assessment) that accurately predicts colorectal tumor aggressiveness, patient survival rates with and without disease recurrence, and the most effective therapy by analyzing tumor sample images alone. Unlike many existing AI tools that primarily replicate or optimize human expertise, MOMA identifies and interprets visual patterns on microscopy images that are undetectable to the human eye. The tool is freely available to researchers and clinicians.

The model was trained using data from approximately 2,000 colorectal cancer patients from diverse national patient cohorts, totaling over 450,000 participants. During training, researchers provided the model with information about patients' age, sex, cancer stage, and outcomes, as well as genomic, epigenetic, protein, and metabolic profiles of the tumors. The model was then tasked with identifying visual markers related to tumor types, genetic mutations, epigenetic changes, disease progression, and patient survival using pathology images of tumor samples. The model's performance was assessed using a set of previously unseen tumor sample images from different patients, comparing its predictions to actual patient outcomes and other clinical data.

MOMA accurately predicted overall survival following diagnosis and the number of cancer-free years for patients. It also correctly anticipated individual patient responses to various therapies based on the presence of specific genetic mutations influencing cancer progression or spread. In both areas, the tool outperformed human pathologists and current AI models. The researchers recommend testing the model in a prospective, randomized trial evaluating its performance in real patients over time after initial diagnosis before deploying it in clinics and hospitals. Such a study would directly compare MOMA's real-life performance using only images with human clinicians who utilize additional knowledge and test results unavailable to the model, providing the gold-standard demonstration of its capabilities.

“Our model performs tasks that human pathologists cannot do based on image viewing alone,” said study co-senior author Kun-Hsing Yu, assistant professor of biomedical informatics in the Blavatnik Institute at Harvard Medical School, who led an international team of pathologists, oncologists, biomedical informaticians, and computer scientists. “What we anticipate is not a replacement of human pathology expertise, but augmentation of what human pathologists can do. We fully expect that this approach will augment the current clinical practice of cancer management.”

Related Links:
Harvard Medical School
National Cheng Kung University

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Specimen Collection & Transport
New
Autoclave
Advance
Gold Supplier
Ultrasound System
FUTUS LE

Print article
Detecto

Channels

Critical Care

view channel
Image: The gel has been developed for sealing and healing challenging gastrointestinal tract-to-skin connections (Photo courtesy of Terasaki Institute)

Innovative Gel Offers Revolutionary Treatment for Challenging Gastrointestinal Leaks

Gastrointestinal leaks, medically referred to as enterocutaneous fistulas, are abnormal pathways between the gastrointestinal tract and the skin, often resulting from surgical complications.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.