We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App





COVID-19 HPC Consortium Aids Use of Machine Learning and Molecular Modelling to Improve Drug Discovery

By HospiMedica International staff writers
Posted on 08 Jul 2020
Print article
Illustration
Illustration
The COVID-19 High Performance Computing (HPC) Consortium has been launched to provide access to the world’s most powerful high-performance computing resources in support of COVID-19 research.

The COVID-19 HPC Consortium is a unique private-public effort spearheaded by the White House Office of Science and Technology Policy, the US Department of Energy and IBM to bring together federal government, industry, and academic leaders who are volunteering free compute time and resources on their world-class machines. The consortium helps aggregate computing capabilities from the world's most powerful and advanced computers to help COVID-19 researchers execute complex computational research programs to help fight the virus.

Consortium members and affiliates manage a range of computing capabilities: from small clusters to some of the largest supercomputers in the world. They offer not only computational resources, but also software, services, and deep technical expertise to help COVID-19 researchers execute complex computational research programs. Collectively, the consortium offers access to 485 petaflops, five million CPUs, and 50,000 GPUs. Most of the collective power is delivered via supercomputers based on Intel technology. The consortium includes some of the world’s top-performing supercomputing centers, such as the Texas Advanced Computer Center (TACC) at The University of Texas, Department of Energy’s Argonne National Laboratory, and the Pittsburgh Supercomputing Center, among others.

Taking advantage of Intel technologies, scientists are advancing their algorithms and software in ways that are crucial for understanding COVID-19. For instance, scientists aim to combine machine learning (ML) and molecular modelling to improve virtual screening and drug discovery applications targeting COVID-19. They have developed a genetic algorithm capable of searching chemical space surrounding existing antiviral drugs and a deep learning based classification model based on existing public coronavirus binding data (for the SARS-CoV-2 main protease). The scientists plan to combine and extend these tools through a combination of docking and simulation which we can use as inputs to a regression based deep learning model. A key component of their approach will be to use an enhanced version of the out of distribution classification algorithms created previously to design novel kinase (CDK9) inhibitors to identify molecules which have maximum value in terms of expanding the validity of their model. Enhancing their model from a classification model to one capable of regression in this way should provide greatly enhanced capabilities to identify both existing drugs with potential to treat COVID-19 (virtual screening) as well as the discovery of new active compounds.


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
PACS Workstation
CHILI Web Viewer

Print article

Channels

Critical Care

view channel
Image: Researchers have developed a novel risk score for cardiovascular complications after bone marrow transplant (Photo courtesy of 123RF)

Novel Tool Predicts Cardiovascular Risks after Bone Marrow Transplantation

Every year, thousands of people undergo bone marrow transplants to potentially cure serious diseases like leukemia, lymphoma, and immune deficiency disorders. While these transplants can be lifesaving,... Read more

Surgical Techniques

view channel
Image: The Early Bird Bleed Monitoring System provides visual and audible indicators of the onset and progression of bleeding events (Photo courtesy of Saranas)

Novel Technology Monitors and Lowers Bleeding Complications in Patients Undergoing Heart Procedures

Bleeding complications at the femoral access site can significantly hamper recovery, affecting the success of procedures, patient satisfaction, and overall healthcare costs. It is crucial for surgeons... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.