We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

COVID-19 HPC Consortium Aids Use of Machine Learning and Molecular Modelling to Improve Drug Discovery

By HospiMedica International staff writers
Posted on 08 Jul 2020
Print article
The COVID-19 High Performance Computing (HPC) Consortium has been launched to provide access to the world’s most powerful high-performance computing resources in support of COVID-19 research.

The COVID-19 HPC Consortium is a unique private-public effort spearheaded by the White House Office of Science and Technology Policy, the US Department of Energy and IBM to bring together federal government, industry, and academic leaders who are volunteering free compute time and resources on their world-class machines. The consortium helps aggregate computing capabilities from the world's most powerful and advanced computers to help COVID-19 researchers execute complex computational research programs to help fight the virus.

Consortium members and affiliates manage a range of computing capabilities: from small clusters to some of the largest supercomputers in the world. They offer not only computational resources, but also software, services, and deep technical expertise to help COVID-19 researchers execute complex computational research programs. Collectively, the consortium offers access to 485 petaflops, five million CPUs, and 50,000 GPUs. Most of the collective power is delivered via supercomputers based on Intel technology. The consortium includes some of the world’s top-performing supercomputing centers, such as the Texas Advanced Computer Center (TACC) at The University of Texas, Department of Energy’s Argonne National Laboratory, and the Pittsburgh Supercomputing Center, among others.

Taking advantage of Intel technologies, scientists are advancing their algorithms and software in ways that are crucial for understanding COVID-19. For instance, scientists aim to combine machine learning (ML) and molecular modelling to improve virtual screening and drug discovery applications targeting COVID-19. They have developed a genetic algorithm capable of searching chemical space surrounding existing antiviral drugs and a deep learning based classification model based on existing public coronavirus binding data (for the SARS-CoV-2 main protease). The scientists plan to combine and extend these tools through a combination of docking and simulation which we can use as inputs to a regression based deep learning model. A key component of their approach will be to use an enhanced version of the out of distribution classification algorithms created previously to design novel kinase (CDK9) inhibitors to identify molecules which have maximum value in terms of expanding the validity of their model. Enhancing their model from a classification model to one capable of regression in this way should provide greatly enhanced capabilities to identify both existing drugs with potential to treat COVID-19 (virtual screening) as well as the discovery of new active compounds.

Print article
IIR Middle East


Critical Care

view channel
Image: Size comparison of the new mTP laser array (Photo courtesy of Rockley)

New Chip Technology Paves Way for Tiny Wearable Devices to Detect and Measure Biomarkers

Scientists have developed what is believed to be the world’s first micro-transfer-printed (mTP) silicon-photonics-based laser for commercial applications. This groundbreaking achievement by Rockley Photonics... Read more

Surgical Techniques

view channel
Image: The EASEE minimally invasive brain pacemaker has received CE certification (Photo courtesy of Precisis GmbH)

World's First Minimally Invasive Brain Pacemaker Treats Epilepsy

The treatment of patients with epilepsy always begins with medication. However, for decades there has unfortunately been a consistently large group of around 30% of all patients for whom pharmacological... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.