We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Microscale Device Helps Keep Implantable Catheters Clear

By HospiMedica International staff writers
Posted on 14 Jun 2017
A new self-clearing technology could provide patients with neurological and other disorders reliable implantable catheters that could obviate additional surgery to replace failing devices.

Developed by researchers at Purdue University (Lafayette, IN, USA), the technology involves microscale devices with tiny magnetic elements that are located on a thin film that can be assembled into existing catheters. More...
The micromechanical devices are subsequently activated by external magnetic forces in order to remove various biomaterials that foul the catheter. By using a time-varying magnetic field, changing its magnitude, or turning it on and off, dynamic movement and mechanical vibration are created at the pore to remove the obstructive biomaterials.

The magnetic approach generates a large amount of force, and can be done without an integrated circuit or power source, making it much simpler to implement and reducing the burden of hermetic packaging for the implantation process. Mechanical evaluations, including post-release deflection and static and dynamic responses of the device have thus far been tested in chronic shunt systems used for the treatment of hydrocephalus, which requires constant diversion of excess cerebrospinal fluid (CSF) from the brain.

“When a catheter is implanted, the body’s natural reaction is to protect itself against the foreign material by forming a sheath around it. Biofouling materials including bacteria, blood, and inflammatory cells, and other tissue quickly cover the device, often blocking the catheter’s inlet pores, leading to premature device failure,” said biomedical engineer Hyowon Lee, PhD, who developed the technology. “Approximately 40% of shunt systems fail within one year of implantation, and 85% fail within 10 years, mostly due to catheter obstruction.”

Hydrocephalus can cause an enlarged head in children and cause many other life-altering physical, behavioral, and cognitive symptoms in children and adults alike. Over one million people in the United States alone suffer from hydrocephalus, and one to two newborns develop the disorder every 1,000 births. Patients can also acquire hydrocephalus later on in life due to a traumatic brain injury (TBI) or hemorrhagic stroke. The shunt systems used to reduce CSF have a high fail rate due to biofouling, and replacing the failed catheter usually requires neurosurgery, with increased risk of infection and a huge economic, physical, and emotional burden for patients and their caretakers.

Related Links:
Purdue University


Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Mobile X-Ray System
K4W
Ureteral Dilatation Balloon
Dornier Equinox
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.