We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




Microneedle Array Patch Pierces Bacterial Biofilms

By HospiMedica International staff writers
Posted on 12 Oct 2021
A flexible polymer composite microneedle array bypasses biofilm in chronic wounds to deliver both oxygen and bactericidal agents simultaneously.

The polymeric microneedles, developed at Purdue University (Lafayette, IN, USA) and Virginia Polytechnic Institute and State University (Virginia Tech; Blacksburg, USA), are manufactured by ultraviolet (UV) polymerization of flexible polyethylene terephthalate, which conformably attaches to the human body. More...
Containing calcium peroxide and polyvinylpyrrolidone, the microneedle array can effectively elevate oxygen levels from 8 to 12 ppm, as well as provide strong bactericidal effects on both liquid and biofilm bacteria cultures, commonly found in dermal wounds.

Results from an ex-vivo assay study on a porcine wound model showed successful insertion of the biodegradable microneedles into the tissue, while also providing effective bactericidal properties against both Gram-positive and Gram-negative microbes within the complex tissue matrix. The microneedles also demonstrated high levels of cytocompatibility, with less than 10% of apoptosis throughout six days of continuous exposure to human dermal fibroblast cells. The study was published on July 19, 2021, in ACS Applied Bio Materials.

“Bacteria biofilm acts as a shield, hindering antibiotics from reaching infected cells and tissues. The traditional method to bypass biofilm is for physicians to peel it off, which is painful to patients and doesn't discriminate unhealthy tissue from healthy tissue,” said senior author Rahim Rahimi, PhD, of the Purdue School of Materials Engineering. “A flexible microneedle array can provide a better approach for increasing the effectiveness of topical tissue oxygenation as well as the treatment of infected wounds with intrinsically antibiotic resistant biofilms.”

Chronic non-healing wounds, such as diabetic foot ulcer (DFU), are colonized by bacteria that often develop into biofilms that act as a physicochemical barrier to therapeutics and tissue oxygenation, leading to chronic inflammation and tissue hypoxia. Although wound debridement and vigorous mechanical abrasion techniques are often used by clinicians to manage and remove biofilms from wound surfaces, such methods are highly nonselective and painful.

Related Links:
Purdue University
Virginia Polytechnic Institute and State University



Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
Pedicle Screw Platform
CREO DLX Stabilization System
New
Captivator EMR Device
Captivator Endoscopic Mucosal Resection Device
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.