We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




AI Could Learn How to Understand Radiologist Reports

By HospiMedica International staff writers
Posted on 08 Feb 2018
Print article
Researchers at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) have used machine learning techniques, including natural language processing algorithms, to identify clinical concepts in radiologist reports for computed tomography (CT) scans. The technology marks an important first step in the development of artificial intelligence (AI) that could interpret scans and diagnose conditions.

AI is expected to help radiologists interpret X-rays, CT scans, and magnetic resonance imaging (MRI) studies, but requires computer software to be "taught" the difference between a normal study and abnormal findings. The researchers conducted a study to train AI technology to understand text reports written by radiologists by creating a series of algorithms to teach the computer clusters of phrases, such as phospholipid, heartburn, and colonoscopy.

Using 96,303 radiologist reports associated with head CT scans performed at The Mount Sinai Hospital and Mount Sinai Queens between 2010 and 2016, the researchers trained the computer software. They calculated metrics that reflected the variety of language used in these reports and compared them to other large collections of text, including thousands of books, Reuters news stories, inpatient physician notes, and Amazon product reviews in order characterize the "lexical complexity" of radiologist reports. The researchers found an accuracy of 91%, demonstrating that it is possible to automatically identify concepts in text from the complex domain of radiology.

"The language used in radiology has a natural structure, which makes it amenable to machine learning," said senior author Eric Oermann, MD, Instructor in the Department of Neurosurgery at the Icahn School of Medicine at Mount Sinai. "Machine learning models built upon massive radiological text datasets can facilitate the training of future AI-based systems for analyzing radiological images."

"The ultimate goal is to create algorithms that help doctors accurately diagnose patients," says first author John Zech, a medical student at the Icahn School of Medicine at Mount Sinai. "Deep learning has many potential applications in radiology -- triaging to identify studies that require immediate evaluation, flagging abnormal parts of cross-sectional imaging for further review, characterizing masses concerning for malignancy -- and those applications will require many labeled training examples."

Related Links:
Icahn School of Medicine at Mount Sinai

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Electric Bariatric Patient Lifter
SVBL 205

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.