We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Adaptive Organic Transistors Transform Implantable Electronics

By HospiMedica International staff writers
Posted on 04 Jun 2014
Print article
Image: OTFTs bonded to shape-memory polymers change shape when heated (Photo courtesy of UT Dallas).
Image: OTFTs bonded to shape-memory polymers change shape when heated (Photo courtesy of UT Dallas).
Innovative electronic devices based on shape-memory polymers can deploy when implanted inside the body to grip anatomic structures such as nerves and blood vessels.

Developed by researchers at the University of Texas (Dallas, USA) and the University of Tokyo (Japan), the biologically adaptive, flexible organic thin-film transistors (OTFTs) are bonded to the shape-memory polymers, which respond to the body’s heat environment and become less rigid once they are implanted. By doing so, the OTFTs can be adapted to be closer in size and stiffness to biologic structures, thus making them much more biocompatible than current rigid plastic sensors that stays the same shape and stiffness throughout their lifetime.

During testing, the researchers used heat to deploy the device around a cylinder as small as 2.25 millimeters in diameter, and implanted the device in rats. They found that after implantation, the device had morphed with the living tissue while maintaining excellent electronic properties. The next step of the research is to shrink the devices so they can wrap around smaller objects and add more sensory components, so that they might one day help doctors learn more about what is happening inside the body, as well as stimulate the body for treatments. The study was published in the May 2014 issue of Advanced Materials.

“Scientists and physicians have been trying to put electronics in the body for a while now, but one of the problems is that the stiffness of common electronics is not compatible with biological tissue,” said lead author Jonathan Reeder, BSc, a graduate student in the UT Dallas department of materials science and engineering. “You need the device to be stiff at room temperature so the surgeon can implant the device, but soft and flexible enough to wrap around 3-D objects so the body can behave exactly as it would without the device. By putting electronics on shape-changing and softening polymers, we can do just that.”

Related Links:

University of Texas
University of Tokyo


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Surgical Camera
AIM 4K

Print article

Channels

Critical Care

view channel
Image: The lithium-ion battery has entirely stretchable components and stable charging and discharging capacity over time (Photo courtesy of ACS Energy Letters 2024, DOI: 10.1021/acsenergylett.4c01254)

Fully Stretchable Solid Lithium-Ion Battery Paves Way For Flexible Wearable and Implantable Devices

Electronics designed to bend and stretch require batteries that possess the same flexible characteristics. Many attempts to construct such batteries have utilized conductive fabric woven into expandable... Read more

Surgical Techniques

view channel
Image: The ExcelsiusFlex and ACTIFY 3D Total Knee System have been granted FDA 510(k) clearance (Photo courtesy of Globus Medical)

New Robotic Navigation Platform Provides Surgeons Best-In-Class Solution for Orthopedic Treatment

Globus Medical (Audubon, PA, USA) has secured 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its new robotic navigation platform, ExcelsiusFlex, tailored for total knee arthroplasty... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.