We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Machine-Learning Scans Accurately Predict Undiagnosed Dementia

By HospiMedica International staff writers
Posted on 29 Aug 2018
Researchers from the University of Plymouth (Devon, UK) have developed a new machine-learning model that scanned routinely collected National Health Service {(NHS) England, UK)} data in a study and predicted undiagnosed dementia in primary care with high accuracy.

For the study, the researchers used Read-encoded data from 18 consenting GP surgeries across Devon, UK, for 26,483 patients aged over 65 years. More...
The Read codes is a thesaurus of clinical terms used to summarize clinical and administrative data for UK GPs and were assessed on whether they can contribute to dementia risk, along with other factors such as weight and blood pressure. The researchers used the codes to train the machine-learning classification model to identify patients with possible underlying dementia. The study found that the model can detect people with underlying dementia with an accuracy of 84%, suggesting that it could significantly reduce the number of people living with undiagnosed dementia from the current estimated figure of 50% to 8%.

“Machine learning is an application of artificial intelligence where systems automatically learn and improve from experience without being explicitly programmed,” said Emmanuel Ifeachor, Principal Investigator Professor from the School of Computing Electronics and Mathematics at the University of Plymouth. “It’s already being used for many applications throughout healthcare such as medical imaging, but using it for patient data has not been done in quite this way before. The methodology is promising and, if successfully developed and deployed, may help to increase dementia diagnosis in primary care.”

“Dementia is a disease with so many different contributing factors, and it can be quite difficult to pinpoint or predict,” said Dr. Camille Carroll, Consultant Neurologist at University Hospitals Plymouth NHS Trust and Researcher in the Institute of Translational and Stratified Medicine at the University of Plymouth. “There is strong epidemiological evidence that a number of cardiovascular and lifestyle factors such as hypertension; high cholesterol; diabetes; obesity; stroke; atrial fibrillation; smoking; and reduced cognitive, physical, or social activities can predict the risk of dementia in later life, but no studies have taken place that allow us to see this quickly. So having tools that can take a vast amount of data, and automatically identify patients with possible dementia, to facilitate targeted screening, could potentially be very useful and help improve diagnosis rates.”

Related Links:
University of Plymouth
National Health Service


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
ow Frequency Pulse Massager
ET10 L
Open Stapler
PROXIMATE Linear Cutter
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: A smartphone application displays a glucose concentration that was measured using the new sensor (Photo courtesy of Chuchu Chen and Yonghao Fu)

Wearable Device for Diabetics Could Replace Continuous Glucose Monitoring Systems

Monitoring blood glucose is essential for people with diabetes to prevent complications and maintain long-term health. Current continuous glucose monitoring systems require needles inserted under the skin,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.