We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI Could Help Radiologists Improve Osteoarthritis X-ray Diagnosis

By HospiMedica International staff writers
Posted on 25 Oct 2018
Print article
Image: The KL grading system to assess the severity of knee OA. A new UCSF algorithm will help detect OA using this system (Photo courtesy of the University of California, San Francisco).
Image: The KL grading system to assess the severity of knee OA. A new UCSF algorithm will help detect OA using this system (Photo courtesy of the University of California, San Francisco).
Researchers from the Center for Digital Health Innovation at the University of California (San Francisco, CA, USA) have developed a fully automated algorithm for the detection of osteoarthritis with radiographs using the 0–4 Kellgren Lawrence (KL) grading system with a state-of-the-art neural network.

Osteoarthritis classification in the knee is most commonly done with radiographs using the 0–4 KL grading system where 0 is normal, 1 shows doubtful signs of osteoarthritis, 2 is mild osteoarthritis, 3 is moderate osteoarthritis, and 4 is severe osteoarthritis. KL grading is widely used for clinical assessment and diagnosis of osteoarthritis, usually on a high volume of radiographs, making its automation highly relevant.

In order to develop a fully automated algorithm for the detection of osteoarthritis using KL gradings with a state-of-the-art neural network, the researchers collected 4,490 bilateral PA fixed-flexion knee radiographs from the Osteoarthritis Initiative dataset (age = 61.2 ± 9.2 years, BMI = 32.8 ± 15.9 kg/m2, 42/58 male/female split) for six different time points. The left and right knee joints were localized using a U-net model. These localized images were used to train an ensemble of DenseNet neural network architectures for the prediction of osteoarthritis severity.

This ensemble of DenseNets’ testing sensitivity rates of no osteoarthritis, mild, moderate, and severe osteoarthritis were 83.7, 70.2, 68.9, and 86.0%, respectively while the corresponding specificity rates were 86.1, 83.8, 97.1, and 99.1%. Using saliency maps, the researchers confirmed that the neural networks producing these results were in fact selecting the correct osteoarthritic features used in detection. The results suggest that the use of the automatic classifier could assist radiologists in making more accurate and precise diagnosis, given the increasing volume of radiographic image being taken in clinics.

Related Links:
University of California

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Mechanical Baby Scale
seca 725

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.