We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




New AI Method Predicts Breast Cancer Five Years in Advance

By HospiMedica International staff writers
Posted on 18 May 2019
Print article
Image: A new AI method for detecting breast cancer is expected to surpass existing methods that fall short in their predictions (Photo courtesy of MIT).
Image: A new AI method for detecting breast cancer is expected to surpass existing methods that fall short in their predictions (Photo courtesy of MIT).
Researchers from two major institutions have developed a new tool with advanced artificial intelligence (AI) methods to predict a woman’s future risk of breast cancer. The currently available models that use factors such as family history and genetics fall far short in predicting an individual woman’s likelihood of being diagnosed with breast cancer.

In some models, breast density—the amount of dense tissue compared to the amount of fatty tissue in the breast on a mammogram— has been added to improve risk assessment as it is an independent risk factor for breast cancer. Since it is based on subjective assessment that can vary across radiologists, deep learning, a subset of AI in which computers learn by example, has been studied as a way to standardize and automate these measurements.

Adam Yala, a Ph.D. candidate at the Massachusetts Institute of Technology (MIT), in collaboration with Regina Barzilay, Ph.D., an AI expert and professor at MIT, and Constance Lehman, M.D, Ph.D., chief of breast imaging at Massachusetts General Hospital and professor of radiology at Harvard Medical School, recently compared three different risk assessment approaches.

The first model relied on traditional risk factors, the second on deep learning that used the mammogram alone, and the third on a hybrid approach that incorporated both the mammogram and traditional risk factors into the deep learning model. The researchers used nearly 90,000 full-resolution screening mammograms from about 40,000 women to train, validate and test the deep learning model. They were able to obtain cancer outcomes through linkage to a regional tumor registry.

The deep learning models yielded substantially improved risk discrimination over the Tyrer-Cuzick model, a current clinical standard that uses breast density in factoring risk. When comparing the hybrid deep learning model against breast density, the researchers found that patients with non-dense breasts and model-assessed high risk had 3.9 times the cancer incidence of patients with dense breasts and model-assessed low risk. The advantages held across different subgroups of women.

“There’s much more information in a mammogram than just the four categories of breast density. By using the deep learning model, we learn subtle cues that are indicative of future cancer,” said Yala. “There’s a very large amount of information in a full-resolution mammogram that breast cancer risk models have not been able to use until recently. Using deep learning, we can learn to leverage that information directly from the data and create models that are significantly more accurate across diverse populations.”

“Unlike traditional models, our deep learning model performs equally well across diverse races, ages and family histories,” Dr. Barzilay said. “Until now, African-American women were at a distinct disadvantage in having accurate risk assessment of future breast cancer. Our AI model has changed that.”

“A missing element to support more effective, more personalized screening programs has been risk-assessment tools that are easy to implement and that work across the full diversity of women whom we serve,” Dr. Lehman said. “We are thrilled with our results and eager to work closely with our health care systems, our providers and, most importantly, our patients to incorporate this discovery into improved outcomes for all women.”

Related Links:
MIT

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Steam Sterilizer
2000 RBE

Print article

Channels

Critical Care

view channel
Image: Researchers have developed an advanced shear-thinning hydrogel for aneurysm repair (Photo courtesy of TIBI)

New Hydrogel Features Enhanced Capabilities for Treating Aneurysms and Halting Progression

Aneurysms can develop in blood vessels in different body areas, often as a result of atherosclerosis, infections, inflammatory diseases, and other risk factors. These conditions lead to chronic inflammation,... Read more

Surgical Techniques

view channel
Image: The living replacement knee will be tested in clinical trials within five years (Photo courtesy of ARPA-H)

Living Knee Replacement to Revolutionize Osteoarthritis Treatment

Osteoarthritis is the most prevalent type of arthritis, characterized by the progressive deterioration of cartilage, or the protective tissue covering the bone ends, resulting in pain, stiffness, and impaired... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.