We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Cardiac CT Algorithm Quantifies Aortic Valve Calcium

By HospiMedica International staff writers
Posted on 22 Feb 2021
Print article
Image: Cardiac CT AI can detect calcium buildup on the aortic valve (Photo courtesy of Getty Images)
Image: Cardiac CT AI can detect calcium buildup on the aortic valve (Photo courtesy of Getty Images)
A new study shows that an artificial intelligence (AI) model can automatically detect aortic valve calcium (AVC) on cardiac CT, and is superior to visual grading by radiologists.

Developed by researchers at the Catholic University of Korea (Seoul, South Korea), Yonsei University College of Medicine (Seoul, South Korea), and other institutions, the deep learning (DL)-based algorithm was initially trained and validated on 452 non-enhanced electrocardiogram-gated cardiac CT scans. It was then tested on a separate set of 137 cases, with each CT exam manually annotated by a radiologist with seven years of experience in cardiothoracic imaging, and AVC volume and Agatston scores were compared.

The results revealed that when manually measured AVC Agatston score was used as a benchmark, the accuracy of DL-measured AVC Agatston score for AVC volume grading was 97%, which was better than that of the four radiologist readers (77.8–89.9 %). The accuracy of DL algorithm for Agatston score was 92.9%. Overall, the DL model was deemed to be superior to all four radiologists for predicting severe aortic valve calcium cases. The study was published on February 6, 2021, in European Journal of Radiology.

“For observer performance testing, four radiologists determined AVC grade in two reading rounds. The diagnostic performance of DL-measured AVC volume and Agaston score for classifying severe AVC was compared with that of each reader's assessment,” explained lead author Suyon Chang, MD, of the Catholic University of Korea, and colleagues. “To validate AVC segmentation performance, the Dice coefficient [a statistic used to gauge the similarity of two samples] was calculated; after applying the DL algorithm, the Dice coefficient score was 0.807.”

The Agatston score is a semi-automated tool to calculate the extent of coronary artery calcification detected by an unenhanced low-dose CT scan, which is routinely performed in patients undergoing cardiac CT. It allows for early risk stratification as patients with a high Agatston score (over 160) have an increased risk for a major adverse cardiac event (MACE). Although it does not allow for the assessment of soft non-calcified plaques, it has shown a good correlation with contrast-enhanced CT coronary angiography.

Related Links:
Catholic University of Korea
Yonsei University College of Medicine


Gold Supplier
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
New
Elevating X-Ray Table
PROGNOST F
New
High Frequency X-Ray Generator
SHFR
New
Radiography System
Riviera SPV

Print article

Channels

AI

view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Critical Care

view channel
Image: The advanced electronic skin could enable multiplex healthcare monitoring (Photo courtesy of Terasaki Institute)

First-of-Its-Kind Electronic Skin Patch Enables Advanced Health Care Monitoring

For some time now, electronic skin (E-skin) patches have been used to monitor bodily physiological and chemical indicators of health. Such monitors, placed on the skin, are capable of measuring various... Read more

Surgical Techniques

view channel
Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)

Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: Researchers expect broader adoption of AI in healthcare in the near future (Photo courtesy of Pexels)

Artificial Intelligence (AI) Could Save U.S. Healthcare Industry USD 360 Billion Annually

The wider adoption of artificial intelligence (AI) in healthcare could save the U.S. up to USD 360 billion annually although its uptake in the industry is presently limited owing to the absence of trust... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.