We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Unsupervised AI Model Accurately Predicts COVID-19 Patient's Survival Based on Chest CT Exams

By HospiMedica International staff writers
Posted on 08 Aug 2021
Print article
Illustration
Illustration
An "unsupervised" artificial intelligence (AI) model, or one trained without image annotations, can accurately predict the survival of COVID-19 patients on the basis of their chest computed tomography (CT) exams.

Researchers from Massachusetts General Hospital (Boston, MA, USA) have shown that the performance of their pix2surv algorithm based on CT images significantly outperformed those of existing laboratory tests and image-based visual and quantitative predictors in estimating the disease progression and mortality of COVID-19 patients. Thus, pix2surv offers a promising approach for performing image-based prognostic predictions.

Because of the rapid spread and wide range of the clinical manifestations of the coronavirus disease 2019 (COVID-19), fast and accurate estimation of the disease progression and mortality is vital for the management of the patients. Currently available image-based prognostic predictors for patients with COVID-19 are largely limited to semi-automated schemes with manually designed features and supervised learning, and the survival analysis is largely limited to logistic regression. To resolve this problem, the researchers developed a weakly unsupervised conditional generative adversarial network, called pix2surv, which can be trained to estimate the time-to-event information for survival analysis directly from the chest CT images of a patient.

pix2surv enables the estimation of the distribution of the survival time directly from the chest CT images of patients. The model avoids the technical limitations of the previous image-based COVID-19 predictors, because the use of a fully automated conditional GAN makes it possible to train a complete image-based end-to-end survival analysis model for producing the time-to-event distribution directly from input chest CT images without an explicit segmentation or feature extraction efforts. Also, because of the use of weakly unsupervised learning, the annotation effort is reduced to the pairing of input training CT images with the corresponding observed survival time of the patient.

In their study the researchers showed that the prognostic performance of pix2surv based on chest CT images compares favorably with those of currently available laboratory tests and existing image-based visual and quantitative predictors in the estimation of the disease progression and mortality of COVID-19 patients. They also showed that the time-to-event information calculated by pix2surv based on chest CT images enables stratification of the patients into low- and high-risk groups by a wider margin than those of the other predictors. Thus, pix2surv offers a promising approach for performing image-based prognostic prediction for the management of COVID-19 patients.

Related Links:

Print article

Channels

AI

view channel
Image: Cardiologs Holter arrhythmia diagnostic software is cloud-based, vendor-neutral and powered by AI (Photo courtesy of Cardiologs)

AI Predicts Short-Term Risk of Atrial Fibrillation Using 24-Hour Holter Recordings

Atrial Fibrillation (AFib) affects millions of people each year. However, the condition is often unrecognized and untreated. Nowadays, patients are subject to 24-hour ambulatory electrocardiograms (ECGs)... Read more

Critical Care

view channel
Image: Cutting-edge 4D flow MRI scans could revolutionize blood flow assessment in the heart (Photo courtesy of University of East Anglia)

4D Flow MRI Scans Could Revolutionize Diagnosis of Patients with Heart Failure

Researchers have developed cutting-edge imaging technology to help doctors better diagnose and monitor patients with heart failure. The state-of-the-art technology uses magnetic resonance imaging (MRI)... Read more

Surgical Techniques

view channel
Image: The Senhance surgical system with digital laparoscopy (Photo courtesy of Asensus Surgical)

Digital Laparoscopic Platform Leverages Augmented Intelligence and Machine Learning

Challenges in laparoscopic surgery can impact cost, utilization, effectiveness, and outcomes of the procedure. For instance, the inability of the surgeon to control vision can create efficiency and safety... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more

Business

view channel
Image: Expanding the role of autonomous robots can mitigate the shortage of physicians (Photo courtesy of Pexels)

Robot-Assisted Surgical Devices Market Driven by Increased Demand for Patient-Specific Surgeries

An aging population and accompanying retirements will cause a significant physician shortfall of 55,000 to 150,000 by 2030, creating a gap in the healthcare system. Expanding the role of autonomous robots... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.