We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Machine Learning Helps Predict Critical Circulatory Failure

By HospiMedica International staff writers
Posted on 26 Mar 2020
Print article
A new study shows that an artificial intelligence (AI) method that fuses medically relevant information enables critical circulatory failure to be predicted in the intensive care unit (ICU) several hours before it occurs.

Developed at the Swiss Federal Institute of Technology (ETH; Zurich, Switzerland) and Bern University Hospital (Inselspital; Switzerland), the early-warning platform integrates measurements from multiple systems using a high-resolution database that holds 240 patient-years of data. For the study, the researchers used anonymized data from 36,000 admissions to ICUs, and were able to show that just 20 of these variables, including blood pressure, pulse, various blood values, the patient's age, and medications administered were sufficient to make accurate predictions.

In a trial run of the algorithms developed, they were able to predict 90% of circulatory-failure events, with 82% of them identified more than two hours in advance. On average, the system raised 0.05 alarms per patient and hour. The model was also externally validated in an independent patient cohort. The researchers concluded that the model can provide early identification of patients at risk for circulatory failure with a much lower false-alarm rate than conventional threshold-based systems. The study was published on March 9, 2020, in Nature Medicine.

“In intensive care units today, we have to deal with a multitude of alarm systems, but they're not very accurate. Often, they trigger false alarms or they give us only a short advance warning, which can delay initiation of adequate measures to support a patient’s circulation,” said senior author Tobias Merz, MD, of Inselspital. “The aim is to use the method for real-time evaluation of hospital patients' vital signs to provide an early warning system for the medical staff on duty, who, in turn, can take appropriate action at an early stage.”

The constant sounds of alarms from blood pressure machines, ventilators, and heart monitors cause a "tuning out" of the sounds due to the brain adjusting to stimulation. This issue is present in hospitals, in home care providers, nursing homes and other medical facilities alike.

Related Links:
Swiss Federal Institute of Technology
Bern University Hospital


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
New
Documentation System For Blood Banks
HettInfo II
New
Endoscopic Vessel Harvesting
VirtuoSaph Plus

Print article

Channels

Surgical Techniques

view channel
Image: Catheters coated with the new material showed a significant reduction in clotting on the device surface (Photo courtesy of UBC Faculty of Medicine)

Newly Developed Coating Makes Medical Devices Clot-Free

Thrombosis, or the formation of blood clots, presents a significant challenge for devices that come into contact with blood. Unlike natural blood vessels, these devices can activate specific proteins in... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.