We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Ampronix,  Inc

Download Mobile App




Events

ATTENTION: Due to the CORONAVIRUS EPIDEMIC, certain events are being rescheduled for a later date or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
06 May 2020 - 09 May 2020

Machine Learning Helps Predict Critical Circulatory Failure

By HospiMedica International staff writers
Posted on 26 Mar 2020
Print article
Image: A new algorithm can predict circulatory failure form multiple monitors (Photo courtesy of Getty Images)
Image: A new algorithm can predict circulatory failure form multiple monitors (Photo courtesy of Getty Images)
A new study shows that an artificial intelligence (AI) method that fuses medically relevant information enables critical circulatory failure to be predicted in the intensive care unit (ICU) several hours before it occurs.

Developed at the Swiss Federal Institute of Technology (ETH; Zurich, Switzerland) and Bern University Hospital (Inselspital; Switzerland), the early-warning platform integrates measurements from multiple systems using a high-resolution database that holds 240 patient-years of data. For the study, the researchers used anonymized data from 36,000 admissions to ICUs, and were able to show that just 20 of these variables, including blood pressure, pulse, various blood values, the patient's age, and medications administered were sufficient to make accurate predictions.

In a trial run of the algorithms developed, they were able to predict 90% of circulatory-failure events, with 82% of them identified more than two hours in advance. On average, the system raised 0.05 alarms per patient and hour. The model was also externally validated in an independent patient cohort. The researchers concluded that the model can provide early identification of patients at risk for circulatory failure with a much lower false-alarm rate than conventional threshold-based systems. The study was published on March 9, 2020, in Nature Medicine.

“In intensive care units today, we have to deal with a multitude of alarm systems, but they're not very accurate. Often, they trigger false alarms or they give us only a short advance warning, which can delay initiation of adequate measures to support a patient’s circulation,” said senior author Tobias Merz, MD, of Inselspital. “The aim is to use the method for real-time evaluation of hospital patients' vital signs to provide an early warning system for the medical staff on duty, who, in turn, can take appropriate action at an early stage.”

The constant sounds of alarms from blood pressure machines, ventilators, and heart monitors cause a "tuning out" of the sounds due to the brain adjusting to stimulation. This issue is present in hospitals, in home care providers, nursing homes and other medical facilities alike.

Related Links:
Swiss Federal Institute of Technology
Bern University Hospital



Print article

Channels

Business

view channel
Illustration

Surgical Robots Market to Reach USD 13.1 Billion by 2027 Due to High Acceptance in Emerging Regions

The global surgical robots market is forecasted to reach USD 13.1 billion by 2027, driven mainly by low turn-around times and increased innovation in robotics over the coming years. Surgical robots are... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.