We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Microrobot Device Removes Brain Hemorrhages Due to Strokes

By HospiMedica International staff writers
Posted on 17 Jun 2022
Print article
Image: Magnetically controlled medical device removes blood accumulating in the brain during a stroke (Photo courtesy of Purdue University)
Image: Magnetically controlled medical device removes blood accumulating in the brain during a stroke (Photo courtesy of Purdue University)

The current gold standard to treat strokes is a blood thinner called tissue plasminogen activator, which cannot be used for some hemorrhagic strokes. Now, a new treatment for strokes caused by bleeding in the brain that uses a magnetically controlled microrobot-enabled self-clearing catheter has been shown to be 86% effective in animal models.

Researchers at Purdue University (West Lafayette, IN, USA) created the magnetically controlled microdevice that removes blood accumulating in the brain during a stroke. The innovation was tested on porcine models of hemorrhage and the microrobots successfully removed the blood in six of the seven animals in the treatment animal model. The innovation can be remotely activated using externally applied magnetic fields. The researchers have filed for a patent on the intellectual property and the next step to further develop the device is to receive approval from the U.S. Food and Drug Administration for a first-in-human study.

"This innovation is a real advance in the care of strokes, which are notoriously difficult to treat," said Hyowon "Hugh" Lee, a Purdue University associate professor from the Weldon School of Biomedical Engineering, who created the magnetically controlled microdevice. "There is no need for an implanted power source or complicated integrated circuit. As you change the direction of the magnetic field, the microdevice moves like a compass needle with a magnet nearby. They can be part of an implantable shunt system or a part of extraventricular drainage systems."

"Patients with brain hemorrhages have a mortality rate of up to 50%," said Dr. Albert Lee from Goodman Campbell Brain and Spine. "Currently there is no great therapeutic solution for intraventricular hemorrhage. The only other option is blood clot-dissolving drugs that have undesirable risks."

Related Links:
Purdue University


Print article
Radcal

Channels

AI

view channel
Image: ‘Hologram patients’ developed to help train doctors and nurses (Photo courtesy of University of Cambridge)

Life-Like Hologram Patients Train Doctors for Real-Time Decision Making in Emergencies

A medical training project using 'mixed reality' technology aims to make consistent, high-level and relevant clinical training more accessible across the world. University of Cambridge (Cambridge, UK)... Read more

Surgical Techniques

view channel
Image: The Senhance surgical system with digital laparoscopy (Photo courtesy of Asensus Surgical)

Digital Laparoscopic Platform Leverages Augmented Intelligence and Machine Learning

Challenges in laparoscopic surgery can impact cost, utilization, effectiveness, and outcomes of the procedure. For instance, the inability of the surgeon to control vision can create efficiency and safety... Read more

Patient Care

view channel
Image: The biomolecular film can be picked up with tweezers and placed onto a wound (Photo courtesy of TUM)

Biomolecular Wound Healing Film Adheres to Sensitive Tissue and Releases Active Ingredients

Conventional bandages may be very effective for treating smaller skin abrasions, but things get more difficult when it comes to soft-tissue injuries such as on the tongue or on sensitive surfaces like... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more

Business

view channel
Image: Expanding the role of autonomous robots can mitigate the shortage of physicians (Photo courtesy of Pexels)

Robot-Assisted Surgical Devices Market Driven by Increased Demand for Patient-Specific Surgeries

An aging population and accompanying retirements will cause a significant physician shortfall of 55,000 to 150,000 by 2030, creating a gap in the healthcare system. Expanding the role of autonomous robots... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.