We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




Continuous Fetal Monitor Could Prevent Millions of Stillbirths

By HospiMedica International staff writers
Posted on 21 Aug 2019
A new study indicates that commercially available inertial sensors could potentially extract fetal heart rate (FHR) continuously and noninvasively.

Under development at the Stevens Institute of Technology (Hoboken, NJ, USA) and New York University (NYU, USA), the new FHR monitor is based on seismo-cardiogram (SCG) and gyro-cardiogram (GCG) recordings collected from inertial sensors that are currently used to re-orient displayed images on a smartphone when it is rotated to a horizontal or vertical position. More...
The monitor is based on a setup that picked up signals from inertial sensors placed at three points on the mother’s abdomen, and then extracts FHR from a fused cepstrum of recordings from all the sensors.

The novel monitor was evaluated with experiments on ten pregnant women under supine, seated, and standing positions, with the results compared to simultaneously recorded fetal cardiotocography (fCTG) readings, which are based on Doppler ultrasound. When matching the two modalities, the reliability was found to be quite comparable, with the supine position showing the highest correlation. A further advantage is that the monitor measures fetal movements without the mother’s active participation. The researchers claim that being able to assess both FHR and movement at the same time could help rule out fetal distress. The study was published on July 24, 2019, in IEEE Sensors Journal.

“Almost one-third of stillbirths occur in the absence of complicating factors; our device could let a pregnant woman know if her fetus is compromised and she needs to go to the doctor,” said senior author Negar Tavassolian, PhD, of the Stevens Institute of Technology. “Wearable inertial sensors could potentially be used to extract FHR outside the clinic, with accuracy and reliability metrics comparable to other modalities, such as fCTG. Our monitors are also completely passive, so there's no health concern.”

A normal FHR usually ranges from 120 to 160 beats per minute (bpm) in the in-utero period. It is measurable sonographically from around six weeks and the normal range varies during gestation, increasing to around 170 bpm at 10 weeks and decreasing from then to around 130 bpm at term.

Related Links:
Stevens Institute of Technology
New York University


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Neonatal Ventilator Simulation Device
Disposable Infant Test Lung
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The new 3D heart mapping system visualizes all four chambers in real time (Photo courtesy of UPV)

Whole-Heart Mapping Technology Provides Comprehensive Real-Time View of Arrhythmias

Cardiac arrhythmias can be difficult to diagnose and treat because current mapping systems analyze the heart one chamber at a time. This fragmented view forces clinicians to infer electrical activity they... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.