We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




New Noninvasive Methods Detect Lead Exposure Faster, Easier and More Accurately at POC

By HospiMedica International staff writers
Posted on 30 Oct 2024
Print article
Image: Aaron Specht and Alison Roth using benchtop EDXRF systems to analyze toxic elements in dried blood spot samples (Photo courtesy of Malvern Panalytical)
Image: Aaron Specht and Alison Roth using benchtop EDXRF systems to analyze toxic elements in dried blood spot samples (Photo courtesy of Malvern Panalytical)

Exposure to lead can negatively affect health in multiple ways, leading to damage in the brain and central nervous system, delays in development and growth, learning and behavioral issues, problems with hearing and speech, reproductive health complications, kidney damage, high blood pressure, anemia, and more. The standard method for measuring lead exposure is through a blood test, which only reflects exposure from the past 30 days. If this test is conducted outside that timeframe—especially in children—clinicians may not receive results that accurately represent chronic cumulative exposure in the body. Additionally, measuring bone lead levels is crucial because lead, which mimics calcium upon entering the body, disrupts pathways to the brain and accumulates in the bone. However, older technologies used to assess bone lead exposure have several limitations, including their size, the need for specialized knowledge, reliance on rare elements, and slow processing times. Now, researchers have developed noninvasive methods that can detect lead exposure levels in both bone and blood more quickly, easily, and sensitively at the point of care compared to traditional techniques.

The innovative, patent-pending technology developed by researchers at Purdue University (West Lafayette, IN, USA) utilizes portable X-ray fluorescence (XRF) analyzers to measure lead exposure in bone and blood. This new approach with portable XRFs addresses the limitations associated with traditional bone testing. The XRF analyzer employs a straightforward ‘point-and-shoot’ process, and results are available on the analyzer's tablet within minutes. Training an individual to operate this system takes only about 30 minutes, enabling them to perform measurements that can identify community-level lead exposure. The next step for the research team involves securing support from health leaders to incorporate this technology into national cohort studies and routine surveillance, which could help establish national standards for cumulative lead exposure.

Additionally, researchers have developed a method for detecting lead levels in dried blood spots, which is a significant improvement over the traditional approach that requires venous blood draws sent to a laboratory for analysis. The new technique allows for lead detection using dried blood spots, which can be collected much more easily with just a finger prick, requiring only a small amount of capillary blood. As long as more than 10 microliters of blood is present on the dried spot, the test can provide an accurate lead measurement. Similar to the bone test technology, this innovation enhances accessibility for underserved communities and rural populations and offers better sensitivity than existing tests. Both advancements have potential applications for health officials globally. The research on these methods has been published in the September 2024 issue of Current Environmental Health Reports and the March 2021 issue of Environmental Science & Technology.

“It can be difficult to assess their lead exposure levels because it’s hard to get them to a centralized clinic, unlike in an urban environment where people visit a clinic often. By using a portable XRF analyzer, health officials can travel to a community, conduct testing, quickly receive results and move on to the next community,” said Aaron Specht, assistant professor in the School of Health Sciences, who has developed both the technologies. “Our new method detects lead using dried blood spots, which are much easier to collect; they require just a finger prick and only a very small volume of capillary blood. As long as there’s more than 10 microliters of blood on that dried blood spot, we will have an accurate measurement of lead.”

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Transducer Covers
Surgi Intraoperative Covers
New
Mattress Replacement System
Carilex DualPlus

Print article

Channels

Critical Care

view channel
Image: Various sensors might be helpful at different ages (Photo courtesy of Brasier et al./Nature, 2024)

New Generation of Wearable Sensors to Perform Biochemical Analysis of Body Fluids

Wearable devices are already capable of monitoring vital body functions, such as pulse with a smartwatch or blood pressure with a smartphone app. While these sensors can provide reliable real-time data... Read more

Surgical Techniques

view channel
Image: Synthetic images generated by each diffusion model contrasted with the corresponding real textural images of four types of polyps (Photo courtesy of UT at Austin)

AI-Assisted Imaging to Assist Endoscopists in Colonoscopy Procedures

Colorectal cancer is a major health concern in the United States, with the likelihood of developing the disease being 1 in 25 for women and 1 in 23 for men. Polyps, which are precursors to cancer, can... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.