We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Robotic System Remotely Operates Ventilators in COVID-19 Wards

By HospiMedica International staff writers
Posted on 25 Aug 2020
Print article
Image: A robotic assistant adjusts ventilator parameters remotely (Photo courtesy of JHU)
Image: A robotic assistant adjusts ventilator parameters remotely (Photo courtesy of JHU)
A new robotic system allows medical staff to remotely operate ventilators and other bedside machines from outside intensive care rooms of patients suffering from infectious diseases.

Developed at Johns Hopkins University (JHU; Baltimore, MD, USA) and Johns Hopkins Medicine (JHM; Baltimore, MD, USA), the robotic device is affixed to the ventilator's touch screen with a horizontal bar that is secured across the top edge. The bar serves as a stationary track for the back-and-forth movement of two connected vertical bars that extend the full height of the screen. As the vertical bars sweep across the screen, a stylus they carry moves up and down according to its commands, similar to how an Etch A Sketch moves its drawing tool along an X-Y axis.

A camera connected to the top bar sends an image of the screen to the operator's tablet outside the room. The system is still being tested, but in initial trials at the Johns Hopkins Hospital biocontainment unit, a tablet was used to remotely change oxygen percentage and volume delivered by a ventilator to a mannequin in an adjoining room. According to the developers, the robotic system can be deployed to help hospitals preserve protective gear, limit staff exposure to COVID-19, and provide more time for clinical work.

“Routine adjustments typically take just a couple minutes inside a room. But putting on and removing gear added an additional six minutes to the process. Doing that 10 times in a single shift steals an entire hour that could have been spent delivering patient care,” said respiratory therapist Jonathan Cope, who assisted with the project. “This remote-control system will be a force multiplier for our frontline clinicians. Being able to save time to deliver more care to more patients will pay huge dividends when we face massive patient surges during pandemicsm.”

The COVID-19 pandemic spurred a surge of highly infectious patients requiring ventilators, infusion pumps, and other equipment. Treating such intensive care patients requires personnel to don and doff personal protective equipment (PPE) every time, even for minor adjustments to machines. The process burns through limited supplies, and also wastes valuable time and personnel as the procedure requires an additional person to assist with the changing of gowns, gloves, masks, and other gear.

Related Links:
Johns Hopkins University
Johns Hopkins Medicine


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Hemoconcentrator
Hemocor HPH

Print article

Channels

Critical Care

view channel
Image: The lithium-ion battery has entirely stretchable components and stable charging and discharging capacity over time (Photo courtesy of ACS Energy Letters 2024, DOI: 10.1021/acsenergylett.4c01254)

Fully Stretchable Solid Lithium-Ion Battery Paves Way For Flexible Wearable and Implantable Devices

Electronics designed to bend and stretch require batteries that possess the same flexible characteristics. Many attempts to construct such batteries have utilized conductive fabric woven into expandable... Read more

Surgical Techniques

view channel
Image: The ExcelsiusFlex and ACTIFY 3D Total Knee System have been granted FDA 510(k) clearance (Photo courtesy of Globus Medical)

New Robotic Navigation Platform Provides Surgeons Best-In-Class Solution for Orthopedic Treatment

Globus Medical (Audubon, PA, USA) has secured 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its new robotic navigation platform, ExcelsiusFlex, tailored for total knee arthroplasty... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.