We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Graphene `Tattoo` Implant Treats Cardiac Arrhythmia with Light

By HospiMedica International staff writers
Posted on 19 Apr 2023
Print article
Image: The graphene heart implant on tattoo paper (Photo courtesy of Northwestern University)
Image: The graphene heart implant on tattoo paper (Photo courtesy of Northwestern University)

Cardiac arrhythmias, or heart rhythm disorders, occur when the heart beats too quickly or too slowly. While some cases are not severe, many can lead to heart failure, stroke, or even sudden death. Arrhythmias are often treated with implantable pacemakers and defibrillators that detect and correct abnormal heartbeats using electrical stimulation. However, the rigid nature of these devices can limit the heart's natural movements, injure soft tissues, and cause discomfort and complications such as swelling, perforations, blood clots, and infections. Researchers have now developed the first cardiac implant using graphene, a two-dimensional super-material known for its strength, lightweight, and conductive properties.

Developed by researchers at Northwestern University (Evanston, IL, USA), the graphene "tattoo" implant resembles a child's temporary tattoo but functions like a traditional pacemaker despite being thinner than a single strand of hair. In comparison to the current pacemakers and implanted defibrillators made of rigid materials that are mechanically incompatible with the human body, the new device gently melds to the heart to both sense and treat irregular heartbeats at the same time. In addition to being thin and flexible enough to conform to the heart's delicate contours, the implant is also sufficiently stretchy and strong to tolerate the dynamic motions of a beating heart.

The researchers sought to create a bio-compatible device that could conform to soft, dynamic tissues. After considering various materials, they chose graphene, an atomically thin form of carbon with potential applications in high-performance electronics, high-strength materials, and energy devices. The team was already developing graphene electronic tattoos (GETs) with sensing capabilities that adhere to the skin and continuously monitor vital signs, including blood pressure and electrical activity of the brain, heart, and muscles. However, they needed to explore new methods for using these devices inside the body, directly on the heart's surface.

To achieve this, the researchers developed a new technique to encase the graphene tattoo and adhere it to a beating heart's surface. They encapsulated the graphene in a flexible, elastic silicone membrane with a hole providing access to the interior graphene electrode. They then placed gold tape (10 microns thick) onto the encapsulating layer to serve as an electrical interconnect between the graphene and external electronics used to measure and stimulate the heart. The entire thickness of all layers together is about 100 microns, making it the thinnest known cardiac implant.

In a rat model, the researchers demonstrated that the graphene tattoo could successfully sense irregular heart rhythms and deliver electrical stimulation via a series of pulses without constraining or altering the heart's natural motions. In addition, the technology is optically transparent, enabling the researchers to perform optocardiography - using light to track and modulate heart rhythm - in the animal study. This approach offers a new way to diagnose and treat heart ailments and opens possibilities for optogenetics, a method for controlling and monitoring single cells with light. While electrical stimulation can correct abnormal heart rhythms, optical stimulation provides greater precision, allowing researchers to track specific enzymes and examine particular heart, muscle, or nerve cells.

“One of the challenges for current pacemakers and defibrillators is that they are difficult to affix onto the surface of the heart,” said Northwestern’s Igor Efimov, the study’s senior author. “Defibrillator electrodes, for example, are essentially coils made of very thick wires. These wires are not flexible, and they break. Rigid interfaces with soft tissues, like the heart, can cause various complications. By contrast, our soft, flexible device is not only unobtrusive but also intimately and seamlessly conforms directly onto the heart to deliver more precise measurements.”

Related Links:
Northwestern University 

Gold Member
12-Channel ECG
CM1200B
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Infant Blood Draw Station
Infant Blood Draw Station

Print article

Channels

Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.