We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Temporary Organic Electrodes to Allow Implant and Removal of Bioelectronics without Surgery

By HospiMedica International staff writers
Posted on 22 Aug 2023

Electrotherapy is a medical treatment that harnesses the power of electrical currents to stimulate the body's nervous system and tissues. More...

Traditionally, this technique finds its application in managing chronic ailments such as Parkinson's disease or irregular heart rhythms. Nevertheless, its potential extends beyond treating chronic conditions to ailments like cancer and nerve injuries that could potentially benefit from electrotherapy. The key challenge lies in the need for invasive surgical procedures to implant the required metal electrodes that can be especially complex when dealing with delicate tissues like the brain. Now, researchers have successfully created temporary, organic electrodes capable of seamless integration into biological systems, paving the way for bioelectronics to be implanted in and removed from the body without the need for surgery.

Researchers at Lund University (Lund, Sweden) and Gothenburg University (Gothenburg, Sweden) have developed a technique that involves the injection of a solution containing nanoparticles into the tissue, using a needle with the dimensions of a human hair. These nanoparticles are composed of small molecular chains, known as polymers, and possess the remarkable ability to self-organize into a conducting structure while seamlessly integrating with the body's cells. The novelty of this approach lies in its minimally invasive nature. Furthermore, the particles naturally degrade and are excreted from the body post-treatment, eliminating the requirement for surgical extraction. Notably, the electrodes formed using this technique cover larger surface areas than their metal counterparts utilized in current practices, potentially enhancing the efficacy of the treatment.

“Our work naturally integrates electronics with biological systems, which opens up possibilities for therapies for non-chronic diseases, that are difficult to treat,” said Martin Hjort, a researcher at Lund University and first author of the study. “In the study, we used zebrafish, an excellent model for studying organic electrodes in brain structures.”

Related Links:
Lund University
Gothenburg University


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Endoscopy Display
E190
Absorbable Monofilament Mesh
Phasix Mesh
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.