We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal IBA  Group

Download Mobile App




New Algorithm Better Identifies Seizure Origin for More Precise Surgical Interventions

By HospiMedica International staff writers
Posted on 11 Dec 2024

Epilepsy, affecting over 50 million people globally, is one of the most common neurological disorders. More...

While many forms of epilepsy can be managed with medication, those with drug-resistant epilepsy often require surgical intervention to control their seizures. In such cases, neurosurgeons typically remove the brain area that triggers the seizures. To pinpoint the precise region responsible, doctors first use an EEG to record brain activity during a seizure by attaching electrodes to the patient’s scalp. If this method does not provide sufficient information, a more invasive approach, the stereo-EEG, is employed, which involves inserting electrodes into the suspected brain areas through small holes drilled into the skull. Although more invasive, stereo-EEG offers higher-resolution recordings of brain activity during seizures compared to traditional EEG. However, this technique only captures the area of the brain with the highest activity and does not track the entire path of the seizure as it spreads. Consequently, the region with the largest signals may indicate the propagation of the seizure and not necessarily the source. As a result, even with this invasive method, surgical success occurs only about 60% of the time.

Now, a new tool developed by neural engineers at Duke Pratt School of Engineering (Durham, NC, USA;) promises to enhance these surgical outcomes by helping neurosurgeons more accurately identify the seizure origins in the brain. The tool, an algorithm called TEDIE (Temporally Dependent Iterative Expansion), collects signals from every implanted electrode and reconstructs the path and changes of neural activity during a seizure. With just brain imaging data and stereo-EEG recordings, TEDIE creates a dynamic "movie" showing where the seizure begins and how it spreads throughout the brain. The algorithm not only identifies the seizure’s point of origin but also provides an estimate of its size. In preliminary tests, TEDIE was applied to simulated seizures with known locations and sizes, outperforming other current algorithms. The team then used TEDIE to analyze stereo-EEG recordings from 46 epilepsy patients.

Their findings, published in the journal Brain, demonstrated that TEDIE’s reconstructions accurately identified the areas that were removed in patients who showed no further epilepsy symptoms after surgery. In contrast, TEDIE also identified seizure origins in patients who continued to experience symptoms after surgery, showing that the removed regions were not the source. Additionally, TEDIE revealed potential new surgical targets in 12 out of 23 patients who still had epilepsy symptoms post-surgery. Encouraged by these results, the team plans to introduce TEDIE into clinical trials. They also aim to adapt the algorithm for use with conventional EEG, potentially reducing the need for invasive stereo-EEG and providing a more accessible tool for epilepsy centers without specialized equipment. Furthermore, TEDIE’s capabilities extend beyond clinical applications, offering valuable insights into brain activity for basic neuroscience research.

“Epilepsy is a very complex disorder. In some individuals, physicians will remove parts of the brain and the patient will get better, but then a year later seizures will return,” said Brandon Thio, a recent PhD graduate and first author of the paper. “TEDIE likely won’t bring the efficacy up to 100%, but we hope that it improves on the current 60% clinical success rate.”


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Open Stapler
PROXIMATE Linear Cutter
New
High Pressure Balloon Catheter
UroMax Ultra
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The milli-spinner can shrink blood clots without rupturing them (Photo courtesy of Andrew Brodhead/Stanford)

New Technology More Than Doubles Success Rate for Blood Clot Removal

In cases of ischemic stroke, where a blood clot obstructs oxygen supply to the brain, time is critical. The faster the clot is removed and blood flow restored, the more brain tissue can be saved, improving... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.