We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Imaging Tool Increases Safety of Brain Surgery

By HospiMedica International staff writers
Posted on 25 Oct 2015
Print article
Image: Normal brain containing axons (left) under SRS microscopy, compared to disordered brain tumor tissue (right) (Photo courtesy of U-M).
Image: Normal brain containing axons (left) under SRS microscopy, compared to disordered brain tumor tissue (right) (Photo courtesy of U-M).
A new stimulated Raman scattering (SRS) microscopic technology may help surgeons differentiate between tumor and normal brain tissue in real-time.

Under development at the University of Michigan Health System (U-M; Ann Arbor, MI, USA), New York University (NYU; NY, USA), and other institutions, the SRS microscopy technique is used to produce different signals for proteins and lipids, which can then be assigned a color—blue and green, respectively—to differentiate between brain cortex, tumor tissue, and white matter. To make the approach amenable to routine use in neuropathology, the researchers created an objective classifier that integrates image characteristics (such as protein/lipid ratio, axonal density, and degree of cellularity), into one output that can alert pathologists to tumor infiltration.

The classifier was built using more than 1,400 images from patients with glioblastoma and epilepsy, and can distinguish between tumor-infiltrated and non-tumor regions with over 99% accuracy, regardless of tumor grade or histologic subtype. A subsequent study of biopsies taken from adult and pediatric patients with glioblastoma revealed not only distinctive features with SRS microscopy, but also the presence of infiltrating cells in tissues that appeared otherwise normal when examined with traditional staining techniques. The study was published on October 14, 2015, in Science Translational Medicine.

“SRS imaging technology could be used to complement existing neurosurgical workflows, allowing for rapid and objective characterization of brain tissues and, in turn, clinical decision-making,” concluded lead author neurosurgeon Daniel Orringer, MD, of U-M, and colleagues. “It allows the surgical decision-making process to become data driven instead of relying on the surgeon's best guess. We're able to visualize tumor that otherwise would be invisible to the surgeon in the operating room.”

“This technology has the potential to resolve a long-standing issue in cancer surgery, which is the need for faster and more effective methods to assess whether a tumor has been fully removed,” added Richard Conroy, PhD, of the US National Institutes of Health (NIH; Bethesda, MD, USA), which provided funding for the development of the technology. “The ability to determine tumor margins without having to send samples to a pathologist could increase patient safety and improve outcomes by shortening the length of surgeries and reducing the number of cases where cancer cells are left behind.”

Related Links:

University of Michigan Health System
New York University
US National Institutes of Health


Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Bronchoscopy Head Support
Reison 10-330

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Surgical Techniques

view channel
Image: NICO SPECTRA is only hand-held technology delivering blue light closer to target to enhance tissue fluorescence (Photo courtesy of NICO Corporation)

Handheld Device for Fluorescence-Guided Surgery a Game Changer for Removal of High-Grade Glioma Brain Tumors

Grade III or IV gliomas are among the most common and deadly brain tumors, with around 20,000 cases annually in the U.S. and 1.2 million globally. These tumors are very aggressive and tend to infiltrate... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.