We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




AI Approach Lowers Radiation Exposure from CT Imaging

By HospiMedica International staff writers
Posted on 06 Jul 2019
Print article
Image: Research shows machine learning has the potential to advance medical imaging, particularly CT scanning, by reducing radiation exposure and improving image quality (Photo courtesy of Axis Imaging News).
Image: Research shows machine learning has the potential to advance medical imaging, particularly CT scanning, by reducing radiation exposure and improving image quality (Photo courtesy of Axis Imaging News).
Engineers at the Rensselaer Polytechnic Institute (Troy, NY, USA) worked along with radiologists at Massachusetts General Hospital (Boston, MA, USA) and Harvard Medical School (Boston, MA, USA) to demonstrate that machine learning has the potential to vastly advance medical imaging, particularly computerized tomography (CT) scanning, by reducing radiation exposure and improving image quality. The team believes that their new research findings make a strong case for harnessing the power of artificial intelligence (AI) to improve low-dose CT scans.

Over the past several years, there has been significant focus on low-dose CT imaging techniques to alleviate concerns over patient exposure to X-ray radiation associated with widely used CT scans. However, reducing radiation can affect image quality. Engineers across the world have attempted to solve this problem by designing iterative reconstruction techniques to help sift through and remove interferences from CT images. However, the drawback is that these algorithms sometimes remove useful information or falsely alter the image.

In the latest research, the team attempted to address this persistent challenge by using a machine-learning framework. The developed a dedicated deep neural network and compared their best results to the best of what three major commercial CT scanners could produce with iterative reconstruction techniques. The researchers were looking to determine how the performance of their deep learning approach compared to the selected representative iterative algorithms currently being used clinically. They found that the deep learning algorithms developed by the Rensselaer team performed as well as, or better than, those current iterative techniques in an overwhelming majority of cases.

The researchers also found that their deep learning method was much quicker and allowed the radiologists to fine-tune the images according to clinical requirements. The positive results were realized without access to the original, or raw, data from all the CT scanners, and a more specialized deep learning algorithm is likely to perform even better if original CT data is made available, according to the researchers. They believe that these results confirm that deep learning could help produce safer, more accurate CT images while also running more rapidly than iterative algorithms.

“Radiation dose has been a significant issue for patients undergoing CT scans. Our machine learning technique is superior, or, at the very least, comparable, to the iterative techniques used in this study for enabling low-radiation dose CT,” said Ge Wang, the Clark & Crossan Endowed Chair Professor of biomedical engineering at Rensselaer, and a corresponding author on this paper. “It’s a high-level conclusion that carries a powerful message. It’s time for machine learning to rapidly take off and, hopefully, take over.”

Related Links:
Rensselaer Polytechnic Institute
Massachusetts General Hospital
Harvard Medical School

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Harness System
Neo-Restraint

Print article

Channels

Surgical Techniques

view channel
Image: Lightning Flash 2.0 features advanced computer assisted vacuum thrombectomy software (Photo courtesy of Penumbra)

Next-Gen Computer Assisted Vacuum Thrombectomy Technology Rapidly Removes Blood Clots

Pulmonary embolism (PE) occurs when a blood clot blocks one of the arteries in the lungs. Often, these clots originate from the leg or another part of the body, a condition known as deep vein thrombosis,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.