We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Machine Learning Algorithm Identifies Deteriorating Patients in Hospital Who Need Intensive Care

By HospiMedica International staff writers
Posted on 12 Feb 2021
Print article
Illustration
Illustration
Researchers have developed a machine learning algorithm that could significantly improve clinicians’ ability to identify hospitalized patients whose condition is deteriorating to the extent that they need intensive care.

The HAVEN system (Hospital-wide Alerting Via Electronic Noticeboard) developed by scientists at the University of Oxford (Oxford, UK) combines patients’ vital signs - such as blood pressure, heart rate and temperature - with their blood test results, comorbidities and frailty into a single risk score. The HAVEN score gives a more precise indication of which patients are deteriorating when compared with previously published scores.

Over the past 20 years, health care systems worldwide have implemented alerting systems to improve detection of patients at risk of deterioration. Most are based on abnormalities in patients’ vital signs, usually by combining them into an early warning score. Clinicians are alerted when the EWS rises above a given threshold.

“Late recognition of patient deterioration in hospital is associated with worse outcomes, including higher mortality. Despite the widespread introduction of early warning score systems, which are based on vital signs, deterioration still goes unrecognized,” said Prof Peter Watkinson, Associate Professor of Intensive Care Medicine at the University’s Nuffield Department of Clinical Neurosciences. “The HAVEN system we have developed and validated was able to detect nearly twice as many patients who suffered a cardiac arrest or needed intensive care up to 48 hours in advance, than the next best system.”

Related Links:
University of Oxford

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
12-Channel ECG
CM1200B
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Information Management System
Innovian Anesthesia

Print article

Channels

Critical Care

view channel
Image: Researchers have developed a novel risk score for cardiovascular complications after bone marrow transplant (Photo courtesy of 123RF)

Novel Tool Predicts Cardiovascular Risks after Bone Marrow Transplantation

Every year, thousands of people undergo bone marrow transplants to potentially cure serious diseases like leukemia, lymphoma, and immune deficiency disorders. While these transplants can be lifesaving,... Read more

Surgical Techniques

view channel
Image: The Early Bird Bleed Monitoring System provides visual and audible indicators of the onset and progression of bleeding events (Photo courtesy of Saranas)

Novel Technology Monitors and Lowers Bleeding Complications in Patients Undergoing Heart Procedures

Bleeding complications at the femoral access site can significantly hamper recovery, affecting the success of procedures, patient satisfaction, and overall healthcare costs. It is crucial for surgeons... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.